These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 31757154)
1. Construction of self-interaction-corrected exchange-correlation functionals within the correlation factor approach. Wang R; Zhou Y; Ernzerhof M J Chem Phys; 2019 Nov; 151(19):194102. PubMed ID: 31757154 [TBL] [Abstract][Full Text] [Related]
2. The correlation factor approach: Combining density functional and wave function theory. Roy PO; Cuierrier É; Ernzerhof M J Chem Phys; 2020 Jun; 152(21):211101. PubMed ID: 32505142 [TBL] [Abstract][Full Text] [Related]
3. Generating Exchange-Correlation Functionals with a Simplified, Self-Consistent Correlation Factor Model. Roy PO; Cuierrier E; Ernzerhof M J Phys Chem A; 2023 Mar; 127(8):2026-2033. PubMed ID: 36802604 [TBL] [Abstract][Full Text] [Related]
4. The factorization ansatz for non-local approximations to the exchange-correlation hole. Cuierrier E; Roy PO; Ernzerhof M J Chem Phys; 2022 May; 156(18):184110. PubMed ID: 35568557 [TBL] [Abstract][Full Text] [Related]
5. The fourth-order expansion of the exchange hole and neural networks to construct exchange-correlation functionals. Cuierrier E; Roy PO; Wang R; Ernzerhof M J Chem Phys; 2022 Nov; 157(17):171103. PubMed ID: 36347712 [TBL] [Abstract][Full Text] [Related]
6. Constructing and representing exchange-correlation holes through artificial neural networks. Cuierrier E; Roy PO; Ernzerhof M J Chem Phys; 2021 Nov; 155(17):174121. PubMed ID: 34742211 [TBL] [Abstract][Full Text] [Related]
7. Efficient construction of exchange and correlation potentials by inverting the Kohn-Sham equations. Kananenka AA; Kohut SV; Gaiduk AP; Ryabinkin IG; Staroverov VN J Chem Phys; 2013 Aug; 139(7):074112. PubMed ID: 23968077 [TBL] [Abstract][Full Text] [Related]
8. Construction of exchange-correlation functionals through interpolation between the non-interacting and the strong-correlation limit. Zhou Y; Bahmann H; Ernzerhof M J Chem Phys; 2015 Sep; 143(12):124103. PubMed ID: 26428992 [TBL] [Abstract][Full Text] [Related]
9. The shell model for the exchange-correlation hole in the strong-correlation limit. Bahmann H; Zhou Y; Ernzerhof M J Chem Phys; 2016 Sep; 145(12):124104. PubMed ID: 27782660 [TBL] [Abstract][Full Text] [Related]
10. Design of exchange-correlation functionals through the correlation factor approach. Pavlíková Přecechtělová J; Bahmann H; Kaupp M; Ernzerhof M J Chem Phys; 2015 Oct; 143(14):144102. PubMed ID: 26472358 [TBL] [Abstract][Full Text] [Related]
11. Orbital- and state-dependent functionals in density-functional theory. Görling A J Chem Phys; 2005 Aug; 123(6):62203. PubMed ID: 16122289 [TBL] [Abstract][Full Text] [Related]
12. Long-Range-Corrected Hybrids Based on a New Model Exchange Hole. Weintraub E; Henderson TM; Scuseria GE J Chem Theory Comput; 2009 Apr; 5(4):754-62. PubMed ID: 26609580 [TBL] [Abstract][Full Text] [Related]
13. Magnetic Exchange Couplings from Semilocal Functionals Evaluated Nonself-Consistently on Hybrid Densities: Insights on Relative Importance of Exchange, Correlation, and Delocalization. Phillips JJ; Peralta JE J Chem Theory Comput; 2012 Sep; 8(9):3147-58. PubMed ID: 26605726 [TBL] [Abstract][Full Text] [Related]
14. Shrinking Self-Interaction Errors with the Fermi-Löwdin Orbital Self-Interaction-Corrected Density Functional Approximation. Sharkas K; Li L; Trepte K; Withanage KPK; Joshi RP; Zope RR; Baruah T; Johnson JK; Jackson KA; Peralta JE J Phys Chem A; 2018 Dec; 122(48):9307-9315. PubMed ID: 30412407 [TBL] [Abstract][Full Text] [Related]
15. Self-Interaction Error in Density Functional Theory: An Appraisal. Bao JL; Gagliardi L; Truhlar DG J Phys Chem Lett; 2018 May; 9(9):2353-2358. PubMed ID: 29624392 [TBL] [Abstract][Full Text] [Related]