BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 31757163)

  • 1. Making many-body interactions nearly pairwise additive: The polarized many-body expansion approach.
    Veccham SP; Lee J; Head-Gordon M
    J Chem Phys; 2019 Nov; 151(19):194101. PubMed ID: 31757163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fragment-Based Local Coupled Cluster Embedding Approach for the Quantification and Analysis of Noncovalent Interactions: Exploring the Many-Body Expansion of the Local Coupled Cluster Energy.
    Ghosh S; Neese F; Izsák R; Bistoni G
    J Chem Theory Comput; 2021 Jun; 17(6):3348-3359. PubMed ID: 34037397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate quantum-chemical fragmentation calculations for ion-water clusters with the density-based many-body expansion.
    Schürmann S; Vornweg JR; Wolter M; Jacob CR
    Phys Chem Chem Phys; 2022 Dec; 25(1):736-748. PubMed ID: 36507782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatically Embedded Many-Body Correlation Energy, with Applications to the Calculation of Accurate Second-Order Møller-Plesset Perturbation Theory Energies for Large Water Clusters.
    Dahlke EE; Truhlar DG
    J Chem Theory Comput; 2007 Jul; 3(4):1342-8. PubMed ID: 26633207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aiming for benchmark accuracy with the many-body expansion.
    Richard RM; Lao KU; Herbert JM
    Acc Chem Res; 2014 Sep; 47(9):2828-36. PubMed ID: 24883986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water 16-mers and hexamers: assessment of the three-body and electrostatically embedded many-body approximations of the correlation energy or the nonlocal energy as ways to include cooperative effects.
    Qi HW; Leverentz HR; Truhlar DG
    J Phys Chem A; 2013 May; 117(21):4486-99. PubMed ID: 23627665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The many-body expansion for aqueous systems revisited: III. Hofmeister ion-water interactions.
    Herman KM; Heindel JP; Xantheas SS
    Phys Chem Chem Phys; 2021 May; 23(19):11196-11210. PubMed ID: 33899854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The many-body expansion combined with neural networks.
    Yao K; Herr JE; Parkhill J
    J Chem Phys; 2017 Jan; 146(1):014106. PubMed ID: 28063436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerating the Convergence of Self-Consistent Field Calculations Using the Many-Body Expansion.
    Ballesteros F; Lao KU
    J Chem Theory Comput; 2022 Jan; 18(1):179-191. PubMed ID: 34881906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrostatically Embedded Many-Body Expansion for Large Systems, with Applications to Water Clusters.
    Dahlke EE; Truhlar DG
    J Chem Theory Comput; 2007 Jan; 3(1):46-53. PubMed ID: 26627150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Dynamics Driven by the Many-Body Expansion (MBE-MD).
    Heindel JP; Xantheas SS
    J Chem Theory Comput; 2021 Dec; 17(12):7341-7352. PubMed ID: 34723531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of the Electrostatically Embedded Many-Body Expansion to Microsolvation of Ammonia in Water Clusters.
    Sorkin A; Dahlke EE; Truhlar DG
    J Chem Theory Comput; 2008 May; 4(5):683-8. PubMed ID: 26621082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the Electrostatically Embedded Many-Body Expansion and the Electrostatically Embedded Many-Body Expansion of the Correlation Energy by Application to Low-Lying Water Hexamers.
    Dahlke EE; Leverentz HR; Truhlar DG
    J Chem Theory Comput; 2008 Jan; 4(1):33-41. PubMed ID: 26619977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Convergence of the Many-Body Expansion for Energy and Forces for Classical Polarizable Models in the Condensed Phase.
    Demerdash O; Head-Gordon T
    J Chem Theory Comput; 2016 Aug; 12(8):3884-93. PubMed ID: 27405002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the many-body expansion for large systems. II. Accuracy considerations.
    Lao KU; Liu KY; Richard RM; Herbert JM
    J Chem Phys; 2016 Apr; 144(16):164105. PubMed ID: 27131529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cluster many-body expansion: A many-body expansion of the electron correlation energy about a cluster mean field reference.
    Abraham V; Mayhall NJ
    J Chem Phys; 2021 Aug; 155(5):054101. PubMed ID: 34364343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the many-body expansion for large systems. III. Critical role of four-body terms, counterpoise corrections, and cutoffs.
    Liu KY; Herbert JM
    J Chem Phys; 2017 Oct; 147(16):161729. PubMed ID: 29096456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water 26-mers Drawn from Bulk Simulations: Benchmark Binding Energies for Unprecedentedly Large Water Clusters and Assessment of the Electrostatically Embedded Three-Body and Pairwise Additive Approximations.
    Friedrich J; Yu H; Leverentz HR; Bai P; Siepmann JI; Truhlar DG
    J Phys Chem Lett; 2014 Feb; 5(4):666-70. PubMed ID: 26270834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Many-Body Basis Set Superposition Effect.
    Ouyang JF; Bettens RP
    J Chem Theory Comput; 2015 Nov; 11(11):5132-43. PubMed ID: 26574311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Embedded correlated wavefunction schemes: theory and applications.
    Libisch F; Huang C; Carter EA
    Acc Chem Res; 2014 Sep; 47(9):2768-75. PubMed ID: 24873211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.