These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 31757205)

  • 1. ImaGene: a convolutional neural network to quantify natural selection from genomic data.
    Torada L; Lorenzon L; Beddis A; Isildak U; Pattini L; Mathieson S; Fumagalli M
    BMC Bioinformatics; 2019 Nov; 20(Suppl 9):337. PubMed ID: 31757205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interpreting generative adversarial networks to infer natural selection from genetic data.
    Riley R; Mathieson I; Mathieson S
    Genetics; 2024 Apr; 226(4):. PubMed ID: 38386895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncovering Footprints of Natural Selection Through Spectral Analysis of Genomic Summary Statistics.
    Arnab SP; Amin MR; DeGiorgio M
    Mol Biol Evol; 2023 Jul; 40(7):. PubMed ID: 37433019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of natural selection in genomic data with deep convolutional neural network.
    Nguembang Fadja A; Riguzzi F; Bertorelle G; Trucchi E
    BioData Min; 2021 Dec; 14(1):51. PubMed ID: 34863217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine-Learning Prospects for Detecting Selection Signatures Using Population Genomics Data.
    Kumar H; Panigrahi M; Panwar A; Rajawat D; Nayak SS; Saravanan KA; Kaisa K; Parida S; Bhushan B; Dutt T
    J Comput Biol; 2022 Sep; 29(9):943-960. PubMed ID: 35639362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinguishing between recent balancing selection and incomplete sweep using deep neural networks.
    Isildak U; Stella A; Fumagalli M
    Mol Ecol Resour; 2021 Nov; 21(8):2706-2718. PubMed ID: 33749134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On convolutional neural networks for selection inference: Revealing the effect of preprocessing on model learning and the capacity to discover novel patterns.
    Cecil RM; Sugden LA
    PLoS Comput Biol; 2023 Nov; 19(11):e1010979. PubMed ID: 38011281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tensor Decomposition-based Feature Extraction and Classification to Detect Natural Selection from Genomic Data.
    Amin MR; Hasan M; Arnab SP; DeGiorgio M
    Mol Biol Evol; 2023 Oct; 40(10):. PubMed ID: 37772983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning in Population Genetics.
    Korfmann K; Gaggiotti OE; Fumagalli M
    Genome Biol Evol; 2023 Feb; 15(2):. PubMed ID: 36683406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Learning for Population Genetic Inference.
    Sheehan S; Song YS
    PLoS Comput Biol; 2016 Mar; 12(3):e1004845. PubMed ID: 27018908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting Positive Selection in Populations Using Genetic Data.
    Koropoulis A; Alachiotis N; Pavlidis P
    Methods Mol Biol; 2020; 2090():87-123. PubMed ID: 31975165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using machine learning to realize genetic site screening and genomic prediction of productive traits in pigs.
    Xiang T; Li T; Li J; Li X; Wang J
    FASEB J; 2023 Jun; 37(6):e22961. PubMed ID: 37178007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-branch Convolutional Neural Network for Identification of Small Non-coding RNA genomic loci.
    Georgakilas GK; Grioni A; Liakos KG; Chalupova E; Plessas FC; Alexiou P
    Sci Rep; 2020 Jun; 10(1):9486. PubMed ID: 32528107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. hapbin: An Efficient Program for Performing Haplotype-Based Scans for Positive Selection in Large Genomic Datasets.
    Maclean CA; Chue Hong NP; Prendergast JG
    Mol Biol Evol; 2015 Nov; 32(11):3027-9. PubMed ID: 26248562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breeding and Genetics Symposium: networks and pathways to guide genomic selection.
    Snelling WM; Cushman RA; Keele JW; Maltecca C; Thomas MG; Fortes MR; Reverter A
    J Anim Sci; 2013 Feb; 91(2):537-52. PubMed ID: 23097404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. INTERPRETING GENERATIVE ADVERSARIAL NETWORKS TO INFER NATURAL SELECTION FROM GENETIC DATA.
    Riley R; Mathieson I; Mathieson S
    bioRxiv; 2023 Jul; ():. PubMed ID: 36945387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data.
    Wang E; Zaman N; Mcgee S; Milanese JS; Masoudi-Nejad A; O'Connor-McCourt M
    Semin Cancer Biol; 2015 Feb; 30():4-12. PubMed ID: 24747696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IntroUNET: Identifying introgressed alleles via semantic segmentation.
    Ray DD; Flagel L; Schrider DR
    PLoS Genet; 2024 Feb; 20(2):e1010657. PubMed ID: 38377104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research and Application of Ancient Chinese Pattern Restoration Based on Deep Convolutional Neural Network.
    Fu X
    Comput Intell Neurosci; 2021; 2021():2691346. PubMed ID: 34925485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Residual networks without pooling layers improve the accuracy of genomic predictions.
    Xie Z; Xu X; Li L; Wu C; Ma Y; He J; Wei S; Wang J; Feng X
    Theor Appl Genet; 2024 May; 137(6):138. PubMed ID: 38771334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.