These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 31757604)

  • 1. Natural Variation in a Dendritic Scaffold Protein Remodels Experience-Dependent Plasticity by Altering Neuropeptide Expression.
    Beets I; Zhang G; Fenk LA; Chen C; Nelson GM; Félix MA; de Bono M
    Neuron; 2020 Jan; 105(1):106-121.e10. PubMed ID: 31757604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decoding a neural circuit controlling global animal state in C. elegans.
    Laurent P; Soltesz Z; Nelson GM; Chen C; Arellano-Carbajal F; Levy E; de Bono M
    Elife; 2015 Mar; 4():. PubMed ID: 25760081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental CO2 inhibits Caenorhabditis elegans egg-laying by modulating olfactory neurons and evokes widespread changes in neural activity.
    Fenk LA; de Bono M
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):E3525-34. PubMed ID: 26100886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of Neuropeptide Expression by Parallel Activity-dependent Pathways in Caenorhabditis elegans.
    Rojo Romanos T; Petersen JG; Pocock R
    Sci Rep; 2017 Jan; 7():38734. PubMed ID: 28139692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impairing one sensory modality enhances another by reconfiguring peptidergic signalling in
    Valperga G; de Bono M
    Elife; 2022 Feb; 11():. PubMed ID: 35201977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EGL-13/SoxD specifies distinct O2 and CO2 sensory neuron fates in Caenorhabditis elegans.
    Gramstrup Petersen J; Rojo Romanos T; Juozaityte V; Redo Riveiro A; Hums I; Traunmüller L; Zimmer M; Pocock R
    PLoS Genet; 2013 May; 9(5):e1003511. PubMed ID: 23671427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A carbon dioxide avoidance behavior is integrated with responses to ambient oxygen and food in Caenorhabditis elegans.
    Bretscher AJ; Busch KE; de Bono M
    Proc Natl Acad Sci U S A; 2008 Jun; 105(23):8044-9. PubMed ID: 18524954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. O2-sensing neurons control CO2 response in C. elegans.
    Carrillo MA; Guillermin ML; Rengarajan S; Okubo RP; Hallem EA
    J Neurosci; 2013 Jun; 33(23):9675-83. PubMed ID: 23739964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative mapping of a digenic behavioral trait implicates globin variation in C. elegans sensory behaviors.
    McGrath PT; Rockman MV; Zimmer M; Jang H; Macosko EZ; Kruglyak L; Bargmann CI
    Neuron; 2009 Mar; 61(5):692-9. PubMed ID: 19285466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High neural activity accelerates the decline of cognitive plasticity with age in
    Li Q; Marcu DC; Palazzo O; Turner F; King D; Spires-Jones TL; Stefan MI; Busch KE
    Elife; 2020 Nov; 9():. PubMed ID: 33228848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Memory of recent oxygen experience switches pheromone valence in
    Fenk LA; de Bono M
    Proc Natl Acad Sci U S A; 2017 Apr; 114(16):4195-4200. PubMed ID: 28373553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Neuropeptides FLP-2 and PDF-1 Act in Concert To Arouse Caenorhabditis elegans Locomotion.
    Chen D; Taylor KP; Hall Q; Kaplan JM
    Genetics; 2016 Nov; 204(3):1151-1159. PubMed ID: 27585848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experience-dependent modulation of C. elegans behavior by ambient oxygen.
    Cheung BH; Cohen M; Rogers C; Albayram O; de Bono M
    Curr Biol; 2005 May; 15(10):905-17. PubMed ID: 15916947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GLOBIN-5-dependent O2 responses are regulated by PDL-1/PrBP that targets prenylated soluble guanylate cyclases to dendritic endings.
    Gross E; Soltesz Z; Oda S; Zelmanovich V; Abergel Z; de Bono M
    J Neurosci; 2014 Dec; 34(50):16726-38. PubMed ID: 25505325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-Cell Memory Regulates a Neural Circuit for Sensory Behavior.
    Kobayashi K; Nakano S; Amano M; Tsuboi D; Nishioka T; Ikeda S; Yokoyama G; Kaibuchi K; Mori I
    Cell Rep; 2016 Jan; 14(1):11-21. PubMed ID: 26725111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of NPR-1 reveals a circuit mechanism for behavioral quiescence in C. elegans.
    Choi S; Chatzigeorgiou M; Taylor KP; Schafer WR; Kaplan JM
    Neuron; 2013 Jun; 78(5):869-80. PubMed ID: 23764289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sphingosine Kinase Regulates Neuropeptide Secretion During the Oxidative Stress-Response Through Intertissue Signaling.
    Kim S; Sieburth D
    J Neurosci; 2018 Sep; 38(38):8160-8176. PubMed ID: 30082417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuropeptide signaling remodels chemosensory circuit composition in Caenorhabditis elegans.
    Leinwand SG; Chalasani SH
    Nat Neurosci; 2013 Oct; 16(10):1461-7. PubMed ID: 24013594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Calcium- and Diacylglycerol-Stimulated Protein Kinase C (PKC), Caenorhabditis elegans PKC-2, Links Thermal Signals to Learned Behavior by Acting in Sensory Neurons and Intestinal Cells.
    Land M; Rubin CS
    Mol Cell Biol; 2017 Oct; 37(19):. PubMed ID: 28716951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of specialized sensory neurons engages a nuclear receptor required for functional plasticity.
    Rossillo M; Ringstad N
    Genes Dev; 2020 Dec; 34(23-24):1666-1679. PubMed ID: 33184226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.