BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31757944)

  • 1. Continuous-variable tomography of solitary electrons.
    Fletcher JD; Johnson N; Locane E; See P; Griffiths JP; Farrer I; Ritchie DA; Brouwer PW; Kashcheyevs V; Kataoka M
    Nat Commun; 2019 Nov; 10(1):5298. PubMed ID: 31757944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum tomography of an electron.
    Jullien T; Roulleau P; Roche B; Cavanna A; Jin Y; Glattli DC
    Nature; 2014 Oct; 514(7524):603-7. PubMed ID: 25355360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron quantum optics: partitioning electrons one by one.
    Bocquillon E; Parmentier FD; Grenier C; Berroir JM; Degiovanni P; Glattli DC; Plaçais B; Cavanna A; Jin Y; Fève G
    Phys Rev Lett; 2012 May; 108(19):196803. PubMed ID: 23003072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coherent particle transfer in an on-demand single-electron source.
    Keeling J; Shytov AV; Levitov LS
    Phys Rev Lett; 2008 Nov; 101(19):196404. PubMed ID: 19113290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The coherence of light is fundamentally tied to the quantum coherence of the emitting particle.
    Karnieli A; Rivera N; Arie A; Kaminer I
    Sci Adv; 2021 Apr; 7(18):. PubMed ID: 33931454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coherence and indistinguishability of single electrons emitted by independent sources.
    Bocquillon E; Freulon V; Berroir JM; Degiovanni P; Plaçais B; Cavanna A; Jin Y; Fève G
    Science; 2013 Mar; 339(6123):1054-7. PubMed ID: 23348504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superradiance and Subradiance due to Quantum Interference of Entangled Free Electrons.
    Karnieli A; Rivera N; Arie A; Kaminer I
    Phys Rev Lett; 2021 Aug; 127(6):060403. PubMed ID: 34420316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homodyne tomography of a single photon retrieved on demand from a cavity-enhanced cold atom memory.
    Bimbard E; Boddeda R; Vitrant N; Grankin A; Parigi V; Stanojevic J; Ourjoumtsev A; Grangier P
    Phys Rev Lett; 2014 Jan; 112(3):033601. PubMed ID: 24484137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minimal-excitation states for electron quantum optics using levitons.
    Dubois J; Jullien T; Portier F; Roche P; Cavanna A; Jin Y; Wegscheider W; Roulleau P; Glattli DC
    Nature; 2013 Oct; 502(7473):659-63. PubMed ID: 24153178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computational approach for investigating Coulomb interaction using Wigner-Poisson coupling.
    Benam M; Ballicchia M; Weinbub J; Selberherr S; Nedjalkov M
    J Comput Electron; 2021; 20(2):775-784. PubMed ID: 34720780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attosecond clocking of correlations between Bloch electrons.
    Freudenstein J; Borsch M; Meierhofer M; Afanasiev D; Schmid CP; Sandner F; Liebich M; Girnghuber A; Knorr M; Kira M; Huber R
    Nature; 2022 Oct; 610(7931):290-295. PubMed ID: 36224421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic theory molecular dynamics and hot dense matter: theoretical foundations.
    Graziani FR; Bauer JD; Murillo MS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033104. PubMed ID: 25314544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Possibility to Probe Negative Values of a Wigner Function in Scattering of a Coherent Superposition of Electronic Wave Packets by Atoms.
    Karlovets DV; Serbo VG
    Phys Rev Lett; 2017 Oct; 119(17):173601. PubMed ID: 29219469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clock-controlled emission of single-electron wave packets in a solid-state circuit.
    Fletcher JD; See P; Howe H; Pepper M; Giblin SP; Griffiths JP; Jones GA; Farrer I; Ritchie DA; Janssen TJ; Kataoka M
    Phys Rev Lett; 2013 Nov; 111(21):216807. PubMed ID: 24313516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial variation of available electronic excitations within individual quantum dots.
    Jung HJ; Dasgupta NP; Van Stockum PB; Koh AL; Sinclair R; Prinz FB
    Nano Lett; 2013 Feb; 13(2):716-21. PubMed ID: 23276278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Entangling free electrons and optical excitations.
    Konečná A; Iyikanat F; García de Abajo FJ
    Sci Adv; 2022 Nov; 8(47):eabo7853. PubMed ID: 36427323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasensitive pulsed, balanced homodyne detector: application to time-domain quantum measurements.
    Hansen H; Aichele T; Hettich C; Lodahl P; Lvovsky AI; Mlynek J; Schiller S
    Opt Lett; 2001 Nov; 26(21):1714-6. PubMed ID: 18049709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observing the Quantum Wave Nature of Free Electrons through Spontaneous Emission.
    Remez R; Karnieli A; Trajtenberg-Mills S; Shapira N; Kaminer I; Lereah Y; Arie A
    Phys Rev Lett; 2019 Aug; 123(6):060401. PubMed ID: 31491157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative Tomography for Continuous Variable Quantum Systems.
    Landon-Cardinal O; Govia LCG; Clerk AA
    Phys Rev Lett; 2018 Mar; 120(9):090501. PubMed ID: 29547319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regarding the validity of the time-dependent Kohn-Sham approach for electron-nuclear dynamics via trajectory surface hopping.
    Fischer SA; Habenicht BF; Madrid AB; Duncan WR; Prezhdo OV
    J Chem Phys; 2011 Jan; 134(2):024102. PubMed ID: 21241075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.