These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31757944)

  • 21. High-resolution spectroscopy of two-dimensional electron systems.
    Dial OE; Ashoori RC; Pfeiffer LN; West KW
    Nature; 2007 Jul; 448(7150):176-9. PubMed ID: 17625561
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiconfiguration Pair-Density Functional Theory: A New Way To Treat Strongly Correlated Systems.
    Gagliardi L; Truhlar DG; Li Manni G; Carlson RK; Hoyer CE; Bao JL
    Acc Chem Res; 2017 Jan; 50(1):66-73. PubMed ID: 28001359
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Issues of nanoelectronics: a possible roadmap.
    Wang KL
    J Nanosci Nanotechnol; 2002; 2(3-4):235-66. PubMed ID: 12908252
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-fidelity heralded quantum squeezing gate based on entanglement.
    Liu K; Li J; Yang R; Zhai S
    Opt Express; 2020 Aug; 28(16):23628-23639. PubMed ID: 32752356
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strong Quantum Coherence between Fermi Liquid Mahan Excitons.
    Paul J; Stevens CE; Liu C; Dey P; McIntyre C; Turkowski V; Reno JL; Hilton DJ; Karaiskaj D
    Phys Rev Lett; 2016 Apr; 116(15):157401. PubMed ID: 27127985
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Band-Gap-Dependent Electronic Compressibility of Carbon Nanotubes in the Wigner Crystal Regime.
    Lotfizadeh N; McCulley DR; Senger MJ; Fu H; Minot ED; Skinner B; Deshpande VV
    Phys Rev Lett; 2019 Nov; 123(19):197701. PubMed ID: 31765201
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multicomponent Time-Dependent Density Functional Theory: Proton and Electron Excitation Energies.
    Yang Y; Culpitt T; Hammes-Schiffer S
    J Phys Chem Lett; 2018 Apr; 9(7):1765-1770. PubMed ID: 29553738
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vertical and adiabatic excitations in anthracene from quantum Monte Carlo: Constrained energy minimization for structural and electronic excited-state properties in the JAGP ansatz.
    Dupuy N; Bouaouli S; Mauri F; Sorella S; Casula M
    J Chem Phys; 2015 Jun; 142(21):214109. PubMed ID: 26049481
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electron-vibration entanglement in the Born-Oppenheimer description of chemical reactions and spectroscopy.
    McKemmish LK; McKenzie RH; Hush NS; Reimers JR
    Phys Chem Chem Phys; 2015 Oct; 17(38):24666-82. PubMed ID: 26204101
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient computations of quantum canonical Gibbs state in phase space.
    Bondar DI; Campos AG; Cabrera R; Rabitz HA
    Phys Rev E; 2016 Jun; 93(6):063304. PubMed ID: 27415384
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fractionally Charged Zero-Energy Single-Particle Excitations in a Driven Fermi Sea.
    Moskalets M
    Phys Rev Lett; 2016 Jul; 117(4):046801. PubMed ID: 27494490
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wigner separability entropy and complexity of quantum dynamics.
    Benenti G; Carlo GG; Prosen T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051129. PubMed ID: 23004725
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Finite-time quantum entanglement in propagating squeezed microwaves.
    Fedorov KG; Pogorzalek S; Las Heras U; Sanz M; Yard P; Eder P; Fischer M; Goetz J; Xie E; Inomata K; Nakamura Y; Di Candia R; Solano E; Marx A; Deppe F; Gross R
    Sci Rep; 2018 Apr; 8(1):6416. PubMed ID: 29686396
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Entropy and wigner functions.
    Manfredi G; Feix MR
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Oct; 62(4 Pt A):4665-74. PubMed ID: 11089005
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heterodyne measurement of Wigner distributions for classical optical fields.
    Lee KF; Reil F; Bali S; Wax A; Thomas JE
    Opt Lett; 1999 Oct; 24(19):1370-2. PubMed ID: 18079807
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Negativity volume of the generalized Wigner function as an entanglement witness for hybrid bipartite states.
    Arkhipov II; Barasiński A; Svozilík J
    Sci Rep; 2018 Nov; 8(1):16955. PubMed ID: 30446703
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatially inhomogeneous electron state deep in the extreme quantum limit of strontium titanate.
    Bhattacharya A; Skinner B; Khalsa G; Suslov AV
    Nat Commun; 2016 Sep; 7():12974. PubMed ID: 27680386
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Single-particle and collective excitations in quantum wires made up of vertically stacked quantum dots: zero magnetic field.
    Kushwaha MS
    J Chem Phys; 2011 Sep; 135(12):124704. PubMed ID: 21974549
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Entanglement with negative Wigner function of almost 3,000 atoms heralded by one photon.
    McConnell R; Zhang H; Hu J; Ćuk S; Vuletić V
    Nature; 2015 Mar; 519(7544):439-42. PubMed ID: 25810205
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.