These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 31757948)

  • 1. Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning.
    Jha D; Choudhary K; Tavazza F; Liao WK; Choudhary A; Campbell C; Agrawal A
    Nat Commun; 2019 Nov; 10(1):5316. PubMed ID: 31757948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Moving closer to experimental level materials property prediction using AI.
    Jha D; Gupta V; Liao WK; Choudhary A; Agrawal A
    Sci Rep; 2022 Jul; 12(1):11953. PubMed ID: 35831344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Descriptor engineering in machine learning regression of electronic structure properties for 2D materials.
    Dau MT; Al Khalfioui M; Michon A; Reserbat-Plantey A; Vézian S; Boucaud P
    Sci Rep; 2023 Apr; 13(1):5426. PubMed ID: 37012307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A big data approach to the ultra-fast prediction of DFT-calculated bond energies.
    Qu X; Latino DA; Aires-de-Sousa J
    J Cheminform; 2013; 5():34. PubMed ID: 23849655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A machine learning platform for the discovery of materials.
    Belle CE; Aksakalli V; Russo SP
    J Cheminform; 2021 May; 13(1):42. PubMed ID: 34044889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A machine learning correction for DFT non-covalent interactions based on the S22, S66 and X40 benchmark databases.
    Gao T; Li H; Li W; Li L; Fang C; Li H; Hu L; Lu Y; Su ZM
    J Cheminform; 2016; 8():24. PubMed ID: 27148408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bulk and surface DFT investigations of inorganic halide perovskites screened using machine learning and materials property databases.
    Jain D; Chaube S; Khullar P; Goverapet Srinivasan S; Rai B
    Phys Chem Chem Phys; 2019 Sep; 21(35):19423-19436. PubMed ID: 31460545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. General Protocol for the Accurate Prediction of Molecular
    Gao P; Zhang J; Peng Q; Zhang J; Glezakou VA
    J Chem Inf Model; 2020 Aug; 60(8):3746-3754. PubMed ID: 32602715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncertainty-Quantified Hybrid Machine Learning/Density Functional Theory High Throughput Screening Method for Crystals.
    Noh J; Gu GH; Kim S; Jung Y
    J Chem Inf Model; 2020 Apr; 60(4):1996-2003. PubMed ID: 32208718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting band gaps of MOFs on small data by deep transfer learning with data augmentation strategies.
    Zhang Z; Zhang C; Zhang Y; Deng S; Yang YF; Su A; She YB
    RSC Adv; 2023 Jun; 13(25):16952-16962. PubMed ID: 37288371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topological representations of crystalline compounds for the machine-learning prediction of materials properties.
    Jiang Y; Chen D; Chen X; Li T; Wei GW; Pan F
    NPJ Comput Mater; 2021; 7():. PubMed ID: 34676106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learned features from density of states for accurate adsorption energy prediction.
    Fung V; Hu G; Ganesh P; Sumpter BG
    Nat Commun; 2021 Jan; 12(1):88. PubMed ID: 33398014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graph network based deep learning of bandgaps.
    Li XG; Blaiszik B; Schwarting ME; Jacobs R; Scourtas A; Schmidt KJ; Voyles PM; Morgan D
    J Chem Phys; 2021 Oct; 155(15):154702. PubMed ID: 34686040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning with Enormous "Synthetic" Data Sets: Predicting Glass Transition Temperature of Polyimides Using Graph Convolutional Neural Networks.
    Volgin IV; Batyr PA; Matseevich AV; Dobrovskiy AY; Andreeva MV; Nazarychev VM; Larin SV; Goikhman MY; Vizilter YV; Askadskii AA; Lyulin SV
    ACS Omega; 2022 Dec; 7(48):43678-43691. PubMed ID: 36506114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Navigating Transition-Metal Chemical Space: Artificial Intelligence for First-Principles Design.
    Janet JP; Duan C; Nandy A; Liu F; Kulik HJ
    Acc Chem Res; 2021 Feb; 54(3):532-545. PubMed ID: 33480674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward Predicting Intermetallics Surface Properties with High-Throughput DFT and Convolutional Neural Networks.
    Palizhati A; Zhong W; Tran K; Back S; Ulissi ZW
    J Chem Inf Model; 2019 Nov; 59(11):4742-4749. PubMed ID: 31644279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stacking Gaussian processes to improve [Formula: see text] predictions in the SAMPL7 challenge.
    Raddi RM; Voelz VA
    J Comput Aided Mol Des; 2021 Sep; 35(9):953-961. PubMed ID: 34363562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical Prediction of Thermal Expansion Anisotropy for Y
    Bodenschatz CJ; Saidi WA; Stokes JL; Webster RI; Costa G
    Materials (Basel); 2024 Jan; 17(2):. PubMed ID: 38255454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving prediction for medical institution with limited patient data: Leveraging hospital-specific data based on multicenter collaborative research network.
    Li J; Tian Y; Li R; Zhou T; Li J; Ding K; Li J
    Artif Intell Med; 2021 Mar; 113():102024. PubMed ID: 33685587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning Enables Highly Accurate Predictions of Photophysical Properties of Organic Fluorescent Materials: Emission Wavelengths and Quantum Yields.
    Ju CW; Bai H; Li B; Liu R
    J Chem Inf Model; 2021 Mar; 61(3):1053-1065. PubMed ID: 33620207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.