These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes. Lu X; Li X; Liu P; Qian X; Miao Q; Peng S Molecules; 2018 Jan; 23(2):. PubMed ID: 29364829 [TBL] [Abstract][Full Text] [Related]
3. Evaluating machine learning methodologies for identification of cancer driver genes. Malebary SJ; Khan YD Sci Rep; 2021 Jun; 11(1):12281. PubMed ID: 34112883 [TBL] [Abstract][Full Text] [Related]
4. Whole-exome sequencing reveals recurrent somatic mutation networks in cancer. Liu X; Wang J; Chen L Cancer Lett; 2013 Nov; 340(2):270-6. PubMed ID: 23153794 [TBL] [Abstract][Full Text] [Related]
5. Identification of new driver and passenger mutations within APOBEC-induced hotspot mutations in bladder cancer. Shi MJ; Meng XY; Fontugne J; Chen CL; Radvanyi F; Bernard-Pierrot I Genome Med; 2020 Sep; 12(1):85. PubMed ID: 32988402 [TBL] [Abstract][Full Text] [Related]
6. Evaluating the evaluation of cancer driver genes. Tokheim CJ; Papadopoulos N; Kinzler KW; Vogelstein B; Karchin R Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14330-14335. PubMed ID: 27911828 [TBL] [Abstract][Full Text] [Related]
7. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival. Suo C; Hrydziuszko O; Lee D; Pramana S; Saputra D; Joshi H; Calza S; Pawitan Y Bioinformatics; 2015 Aug; 31(16):2607-13. PubMed ID: 25810432 [TBL] [Abstract][Full Text] [Related]
8. Machine learning methods for prediction of cancer driver genes: a survey paper. Andrades R; Recamonde-Mendoza M Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35323900 [TBL] [Abstract][Full Text] [Related]
9. Whole-exome sequencing combined with functional genomics reveals novel candidate driver cancer genes in endometrial cancer. Liang H; Cheung LW; Li J; Ju Z; Yu S; Stemke-Hale K; Dogruluk T; Lu Y; Liu X; Gu C; Guo W; Scherer SE; Carter H; Westin SN; Dyer MD; Verhaak RG; Zhang F; Karchin R; Liu CG; Lu KH; Broaddus RR; Scott KL; Hennessy BT; Mills GB Genome Res; 2012 Nov; 22(11):2120-9. PubMed ID: 23028188 [TBL] [Abstract][Full Text] [Related]
10. Exome-Scale Discovery of Hotspot Mutation Regions in Human Cancer Using 3D Protein Structure. Tokheim C; Bhattacharya R; Niknafs N; Gygax DM; Kim R; Ryan M; Masica DL; Karchin R Cancer Res; 2016 Jul; 76(13):3719-31. PubMed ID: 27197156 [TBL] [Abstract][Full Text] [Related]
11. LOTUS: A single- and multitask machine learning algorithm for the prediction of cancer driver genes. Collier O; Stoven V; Vert JP PLoS Comput Biol; 2019 Sep; 15(9):e1007381. PubMed ID: 31568528 [TBL] [Abstract][Full Text] [Related]
12. Machine Learning Classification and Structure-Functional Analysis of Cancer Mutations Reveal Unique Dynamic and Network Signatures of Driver Sites in Oncogenes and Tumor Suppressor Genes. Agajanian S; Odeyemi O; Bischoff N; Ratra S; Verkhivker GM J Chem Inf Model; 2018 Oct; 58(10):2131-2150. PubMed ID: 30253099 [TBL] [Abstract][Full Text] [Related]
14. Exome sequencing of oral squamous cell carcinoma in users of Arabian snuff reveals novel candidates for driver genes. Al-Hebshi NN; Li S; Nasher AT; El-Setouhy M; Alsanosi R; Blancato J; Loffredo C Int J Cancer; 2016 Jul; 139(2):363-72. PubMed ID: 26934577 [TBL] [Abstract][Full Text] [Related]
15. DriverRWH: discovering cancer driver genes by random walk on a gene mutation hypergraph. Wang C; Shi J; Cai J; Zhang Y; Zheng X; Zhang N BMC Bioinformatics; 2022 Jul; 23(1):277. PubMed ID: 35831792 [TBL] [Abstract][Full Text] [Related]
16. Identifying Candidate Druggable Targets in Canine Cancer Cell Lines Using Whole-Exome Sequencing. Das S; Idate R; Cronise KE; Gustafson DL; Duval DL Mol Cancer Ther; 2019 Aug; 18(8):1460-1471. PubMed ID: 31175136 [TBL] [Abstract][Full Text] [Related]
17. Identifying driver mutations from sequencing data of heterogeneous tumors in the era of personalized genome sequencing. Zhang J; Liu J; Sun J; Chen C; Foltz G; Lin B Brief Bioinform; 2014 Mar; 15(2):244-55. PubMed ID: 23818492 [TBL] [Abstract][Full Text] [Related]
18. Individualized discovery of rare cancer drivers in global network context. Petrov I; Alexeyenko A Elife; 2022 May; 11():. PubMed ID: 35593700 [TBL] [Abstract][Full Text] [Related]
19. Identification of constrained cancer driver genes based on mutation timing. Sakoparnig T; Fried P; Beerenwinkel N PLoS Comput Biol; 2015 Jan; 11(1):e1004027. PubMed ID: 25569148 [TBL] [Abstract][Full Text] [Related]
20. A protein-centric approach for exome variant aggregation enables sensitive association analysis with clinical outcomes. Li GXH; Munro D; Fermin D; Vogel C; Choi H Hum Mutat; 2020 May; 41(5):934-945. PubMed ID: 31930623 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]