These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 31758315)

  • 21. Mindfulness-based Virtual Reality Intervention in Hemodialysis Patients: A Pilot Study on End-user Perceptions and Safety.
    Hernandez R; Burrows B; Browning MHEM; Solai K; Fast D; Litbarg NO; Wilund KR; Moskowitz JT
    Kidney360; 2021 Mar; 2(3):435-444. PubMed ID: 35369024
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sick Moves! Motion Parameters as Indicators of Simulator Sickness.
    Feigl T; Roth D; Gradl S; Wirth M; Latoschik ME; Eskofier BM; Philippsen M; Mutschler C
    IEEE Trans Vis Comput Graph; 2019 Nov; 25(11):3146-3157. PubMed ID: 31425036
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluating the effect of multi-sensory stimulations on simulator sickness and sense of presence during HMD-mediated VR experience.
    Grassini S; Laumann K; de Martin Topranin V; Thorp S
    Ergonomics; 2021 Dec; 64(12):1532-1542. PubMed ID: 34165389
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of viewing mode on pathfinding in immersive Virtual Reality.
    White PJ; Byagowi A; Moussavi Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():4619-22. PubMed ID: 26737323
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of unexpected visual motion on postural sway and motion sickness.
    Dennison M; D'Zmura M
    Appl Ergon; 2018 Sep; 71():9-16. PubMed ID: 29764619
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Virtual Reality Sickness Reduces Attention During Immersive Experiences.
    Mimnaugh KJ; Center EG; Suomalainen M; Becerra I; Lozano E; Murrieta-Cid R; Ojala T; LaValle SM; Federmeier KD
    IEEE Trans Vis Comput Graph; 2023 Nov; 29(11):4394-4404. PubMed ID: 37788212
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effects of target location on musculoskeletal load, task performance, and subjective discomfort during virtual reality interactions.
    Penumudi SA; Kuppam VA; Kim JH; Hwang J
    Appl Ergon; 2020 Apr; 84():103010. PubMed ID: 31785450
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Virtual reality environment design of managing both presence and virtual reality sickness.
    Tanaka N; Takagi H
    J Physiol Anthropol Appl Human Sci; 2004 Nov; 23(6):313-7. PubMed ID: 15599082
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Virtual reality-based assessment of basic laparoscopic skills using the Leap Motion controller.
    Lahanas V; Loukas C; Georgiou K; Lababidi H; Al-Jaroudi D
    Surg Endosc; 2017 Dec; 31(12):5012-5023. PubMed ID: 28466361
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploratory factor analysis and validity of the virtual reality symptom questionnaire and computer use survey.
    Del Cid DA; Larranaga D; Leitao M; Mosher RL; Berzenski SR; Gandhi V; Drew SA
    Ergonomics; 2021 Jan; 64(1):69-77. PubMed ID: 32921282
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Factors Affecting Enjoyment of Virtual Reality Games: A Comparison Involving Consumer-Grade Virtual Reality Technology.
    Shafer DM; Carbonara CP; Korpi MF
    Games Health J; 2019 Feb; 8(1):15-23. PubMed ID: 30199273
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using Visual Guides to Reduce Virtual Reality Sickness in First-Person Shooter Games: Correlation Analysis.
    Seok KH; Kim Y; Son W; Kim YS
    JMIR Serious Games; 2021 Jul; 9(3):e18020. PubMed ID: 34264196
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Virtual Reality Simulation for Suicide Risk Assessment Training: Prevalence of Adverse Effects.
    Bahadur AG; Hargreaves F; Antinucci R; Sockalingam S; Abdool PS
    Acad Psychiatry; 2024 Feb; 48(1):57-60. PubMed ID: 37258946
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Powered wheelchair simulator development: implementing combined navigation-reaching tasks with a 3D hand motion controller.
    Tao G; Archambault PS
    J Neuroeng Rehabil; 2016 Jan; 13():3. PubMed ID: 26786110
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Virtual Reality Is Sexist: But It Does Not Have to Be.
    Stanney K; Fidopiastis C; Foster L
    Front Robot AI; 2020; 7():4. PubMed ID: 33501173
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Can Simulator Sickness Be Avoided? A Review on Temporal Aspects of Simulator Sickness.
    Dużmańska N; Strojny P; Strojny A
    Front Psychol; 2018; 9():2132. PubMed ID: 30459688
    [TBL] [Abstract][Full Text] [Related]  

  • 37. EEG-based analysis of various sensory stimulation effects to reduce visually induced motion sickness in virtual reality.
    Yeo SS; Kwon JW; Park SY
    Sci Rep; 2022 Oct; 12(1):18043. PubMed ID: 36302810
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Factors Associated With Virtual Reality Sickness in Head-Mounted Displays: A Systematic Review and Meta-Analysis.
    Saredakis D; Szpak A; Birckhead B; Keage HAD; Rizzo A; Loetscher T
    Front Hum Neurosci; 2020; 14():96. PubMed ID: 32300295
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of apparent latency on simulator sickness while using a see-through helmet-mounted display: reducing apparent latency with predictive compensation.
    Buker TJ; Vincenzi DA; Deaton JE
    Hum Factors; 2012 Apr; 54(2):235-49. PubMed ID: 22624290
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Full-immersion virtual reality: Adverse effects related to static balance.
    Park S; Lee G
    Neurosci Lett; 2020 Aug; 733():134974. PubMed ID: 32294492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.