These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 31758351)

  • 21. Bending undulations and elasticity of the erythrocyte membrane: effects of cell shape and membrane organization.
    Zeman K; Engelhard H; Sackmann E
    Eur Biophys J; 1990; 18(4):203-19. PubMed ID: 2364914
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct Cytoskeleton Forces Cause Membrane Softening in Red Blood Cells.
    Rodríguez-García R; López-Montero I; Mell M; Egea G; Gov NS; Monroy F
    Biophys J; 2015 Jun; 108(12):2794-806. PubMed ID: 26083919
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural and mechanical heterogeneity of the erythrocyte membrane reveals hallmarks of membrane stability.
    Picas L; Rico F; Deforet M; Scheuring S
    ACS Nano; 2013 Feb; 7(2):1054-63. PubMed ID: 23347043
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Changes in protein composition of membrane-cytoskeletal complex in mammalian erythrocytes during cryopreservation].
    Denysova OM; Zemlians'kykh NH; Zhehunov HF
    Fiziol Zh (1994); 2007; 53(4):54-9. PubMed ID: 17902372
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamics of oscillating erythrocyte doublets after electrofusion.
    Baumann M
    Biophys J; 1999 Nov; 77(5):2602-11. PubMed ID: 10545360
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of immunoglobulin binding to isolated human erythrocyte membranes: evidence for selective, temperature-induced binding of naturally occurring autoantibodies to the cytoskeleton.
    Salhany JM; Cordes KS; Sloan RL
    Biochim Biophys Acta; 2001 Mar; 1511(1):168-80. PubMed ID: 11248215
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Topological Structures and Membrane Nanostructures of Erythrocytes after Splenectomy in Hereditary Spherocytosis Patients via Atomic Force Microscopy.
    Li Y; Lu L; Li J
    Cell Biochem Biophys; 2016 Sep; 74(3):365-71. PubMed ID: 27557951
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cytoskeleton induced the changes of microvilli and mechanical properties in living cells by atomic force microscopy.
    Liu X; Wei Y; Li W; Li B; Liu L
    J Cell Physiol; 2021 May; 236(5):3725-3733. PubMed ID: 33169846
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heat-induced alterations in monkey erythrocyte membrane phospholipid organization and skeletal protein structure and interactions.
    Kumar A; Gudi SR; Gokhale SM; Bhakuni V; Gupta CM
    Biochim Biophys Acta; 1990 Dec; 1030(2):269-78. PubMed ID: 2261489
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural, morphological and nanomechanical characterisation of intermediate states in the ageing of erythrocytes.
    Girasole M; Dinarelli S; Boumis G
    J Mol Recognit; 2012 May; 25(5):285-91. PubMed ID: 22528190
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Morphological changes induced in erythrocyte membrane by the antiepileptic treatment: An atomic force microscopy study.
    Oprisan B; Stoica I; Avadanei MI
    Microsc Res Tech; 2017 Apr; 80(4):364-373. PubMed ID: 27862632
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Malarial proteins that interact with the erythrocyte membrane and cytoskeleton.
    Wiser MF
    Exp Parasitol; 1991 Nov; 73(4):515-23. PubMed ID: 1959577
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Depth-sensing analysis of cytoskeleton organization based on AFM data.
    Pogoda K; Jaczewska J; Wiltowska-Zuber J; Klymenko O; Zuber K; Fornal M; Lekka M
    Eur Biophys J; 2012 Jan; 41(1):79-87. PubMed ID: 22038077
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional consequences of sphingomyelinase-induced changes in erythrocyte membrane structure.
    Dinkla S; Wessels K; Verdurmen WP; Tomelleri C; Cluitmans JC; Fransen J; Fuchs B; Schiller J; Joosten I; Brock R; Bosman GJ
    Cell Death Dis; 2012 Oct; 3(10):e410. PubMed ID: 23076218
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermo-mechanical properties of the cell surface assessed by atomic force microscopy.
    Starodubtseva MN; Yegorenkov NI; Nikitina IA
    Micron; 2012 Dec; 43(12):1232-8. PubMed ID: 22613572
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of radiographic contrast media on the micromorphology of the junctional complex of erythrocytes visualized by immunocytology.
    Franke RP; Krüger A; Scharnweber T; Wenzel F; Jung F
    Int J Mol Sci; 2014 Sep; 15(9):16134-52. PubMed ID: 25222553
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanomechanical properties of composite protein networks of erythroid membranes at lipid surfaces.
    Encinar M; Casado S; Calzado-Martín A; Natale P; San Paulo Á; Calleja M; Vélez M; Monroy F; López-Montero I
    Colloids Surf B Biointerfaces; 2017 Jan; 149():174-183. PubMed ID: 27764687
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Membrane fluctuations in erythrocytes are linked to MgATP-dependent dynamic assembly of the membrane skeleton.
    Levin S; Korenstein R
    Biophys J; 1991 Sep; 60(3):733-7. PubMed ID: 1932557
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of cell geometry in the evaluation of erythrocyte viscoelastic properties.
    Gómez F; Silva LS; Araújo GRS; Frases S; Pinheiro AAS; Agero U; Pontes B; Viana NB
    Phys Rev E; 2020 Jun; 101(6-1):062403. PubMed ID: 32688571
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bilayer/cytoskeleton interactions in lipid-symmetric erythrocytes assessed by a photoactivable phospholipid analogue.
    Pradhan D; Williamson P; Schlegel RA
    Biochemistry; 1991 Aug; 30(31):7754-8. PubMed ID: 1868052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.