BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 31758466)

  • 1. Label-Based Mass Spectrometry Approaches for Robust Quantification of the Phosphoproteome and Total Proteome in Toxoplasma gondii.
    Broncel M; Treeck M
    Methods Mol Biol; 2020; 2071():453-468. PubMed ID: 31758466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Profiling of Proteome and Phosphoproteome by Isobaric Labeling, Extensive Liquid Chromatography, and Mass Spectrometry.
    Bai B; Tan H; Pagala VR; High AA; Ichhaporia VP; Hendershot L; Peng J
    Methods Enzymol; 2017; 585():377-395. PubMed ID: 28109439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphopeptide Enrichment and LC-MS/MS Analysis to Study the Phosphoproteome of Recombinant Chinese Hamster Ovary Cells.
    Henry M; Coleman O; Prashant ; Clynes M; Meleady P
    Methods Mol Biol; 2017; 1603():195-208. PubMed ID: 28493132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive phosphoproteome analysis of INS-1 pancreatic β-cells using various digestion strategies coupled with liquid chromatography-tandem mass spectrometry.
    Han D; Moon S; Kim Y; Ho WK; Kim K; Kang Y; Jun H; Kim Y
    J Proteome Res; 2012 Apr; 11(4):2206-23. PubMed ID: 22276854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics.
    Batth TS; Francavilla C; Olsen JV
    J Proteome Res; 2014 Dec; 13(12):6176-86. PubMed ID: 25338131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The phosphoproteomes of Plasmodium falciparum and Toxoplasma gondii reveal unusual adaptations within and beyond the parasites' boundaries.
    Treeck M; Sanders JL; Elias JE; Boothroyd JC
    Cell Host Microbe; 2011 Oct; 10(4):410-9. PubMed ID: 22018241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome.
    Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ
    Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isotope-labeling and affinity enrichment of phosphopeptides for proteomic analysis using liquid chromatography-tandem mass spectrometry.
    Kota U; Chien KY; Goshe MB
    Methods Mol Biol; 2009; 564():303-21. PubMed ID: 19544030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multidimensional electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) for quantitative analysis of the proteome and phosphoproteome in clinical and biomedical research.
    Loroch S; Schommartz T; Brune W; Zahedi RP; Sickmann A
    Biochim Biophys Acta; 2015 May; 1854(5):460-8. PubMed ID: 25619855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphoproteome analysis of human liver tissue by long-gradient nanoflow LC coupled with multiple stage MS analysis.
    Han G; Ye M; Liu H; Song C; Sun D; Wu Y; Jiang X; Chen R; Wang C; Wang L; Zou H
    Electrophoresis; 2010 Mar; 31(6):1080-9. PubMed ID: 20166139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying Proteome and Protein Modifications in Activated T Cells by Multiplexed Isobaric Labeling Mass Spectrometry.
    Tan H; Blanco DB; Xie B; Li Y; Wu Z; Chi H; Peng J
    Methods Mol Biol; 2021; 2285():297-317. PubMed ID: 33928561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of SILAC Labeling in Phosphoproteomics Analysis.
    Stepath M; Bracht T
    Methods Mol Biol; 2021; 2228():167-183. PubMed ID: 33950491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphoproteome Analysis in Immune Cell Signaling.
    Rathore D; Nita-Lazar A
    Curr Protoc Immunol; 2020 Sep; 130(1):e105. PubMed ID: 32936995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)-Based Quantitative Proteomics and Phosphoproteomics in Fission Yeast.
    Carpy A; Koch A; Bicho CC; Borek WE; Hauf S; Sawin KE; Maček B
    Cold Spring Harb Protoc; 2017 Jun; 2017(6):pdb.prot091686. PubMed ID: 28572185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reproducible workflow for multiplexed deep-scale proteome and phosphoproteome analysis of tumor tissues by liquid chromatography-mass spectrometry.
    Mertins P; Tang LC; Krug K; Clark DJ; Gritsenko MA; Chen L; Clauser KR; Clauss TR; Shah P; Gillette MA; Petyuk VA; Thomas SN; Mani DR; Mundt F; Moore RJ; Hu Y; Zhao R; Schnaubelt M; Keshishian H; Monroe ME; Zhang Z; Udeshi ND; Mani D; Davies SR; Townsend RR; Chan DW; Smith RD; Zhang H; Liu T; Carr SA
    Nat Protoc; 2018 Jul; 13(7):1632-1661. PubMed ID: 29988108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of different fractionation strategies for in-depth phosphoproteomics by liquid chromatography tandem mass spectrometry.
    Yeh TT; Ho MY; Chen WY; Hsu YC; Ku WC; Tseng HW; Chen ST; Chen SF
    Anal Bioanal Chem; 2019 Jun; 411(15):3417-3424. PubMed ID: 31011783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the Phosphoproteome Coverage for Limited Sample Amounts Using TiO2-SIMAC-HILIC (TiSH) Phosphopeptide Enrichment and Fractionation.
    Engholm-Keller K; Larsen MR
    Methods Mol Biol; 2016; 1355():161-77. PubMed ID: 26584925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of Direct Kinase Substrates Using Analogue-Sensitive Alleles.
    Rothenberg DA; Gordon EA; White FM; Lourido S
    Methods Mol Biol; 2016; 1355():71-84. PubMed ID: 26584919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Daily changes in the phosphoproteome of the dinoflagellate Lingulodinium.
    Liu B; Lo SC; Matton DP; Lang BF; Morse D
    Protist; 2012 Sep; 163(5):746-54. PubMed ID: 22169124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tools for analyzing the phosphoproteome and other phosphorylated biomolecules: a review.
    Leitner A; Sturm M; Lindner W
    Anal Chim Acta; 2011 Oct; 703(1):19-30. PubMed ID: 21843671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.