These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 31758590)
1. Analysis of Impact of Humidity and Temperature on Excimer Laser Ablation of Polyethylene Terephthalate, Polymethylmethacrylate, and Porcine Corneal Tissue. Verma S; Kehrer T; Hesser J; Arba Mosquera S Lasers Surg Med; 2020 Sep; 52(7):627-638. PubMed ID: 31758590 [TBL] [Abstract][Full Text] [Related]
2. Cross Sectional Analysis of Impact of Seasonal Changes on Excimer Laser Ablation Performance on Polymethyl Methacrylate (PMMA). Verma S; Hesser J; Mosquera SA Vision (Basel); 2023 Jul; 7(3):. PubMed ID: 37489329 [TBL] [Abstract][Full Text] [Related]
3. Thermal Load During Corneal Excimer Laser Ablation: Impact of Different Ablation Parameters. Taneri S; Arba-Mosquera S; Rost A; Dick HB J Refract Surg; 2020 Oct; 36(10):667-676. PubMed ID: 33034359 [TBL] [Abstract][Full Text] [Related]
4. Analysis of the change in peak corneal temperature during excimer laser ablation in porcine eyes. Arba Mosquera S; Verma S J Biomed Opt; 2015 Jul; 20(7):78001. PubMed ID: 26140460 [TBL] [Abstract][Full Text] [Related]
5. Improving the ablation efficiency of excimer laser systems with higher repetition rates through enhanced debris removal and optimized spot pattern. Arba-Mosquera S; Klinner T J Cataract Refract Surg; 2014 Mar; 40(3):477-84. PubMed ID: 24462678 [TBL] [Abstract][Full Text] [Related]
6. In vivo measurements of thermal load during ablation in high-speed laser corneal refractive surgery. de Ortueta D; Magnago T; Triefenbach N; Arba Mosquera S; Sauer U; Brunsmann U J Refract Surg; 2012 Jan; 28(1):53-8. PubMed ID: 21913631 [TBL] [Abstract][Full Text] [Related]
7. Corneal ablation with new 193 nm solid-state laser: preliminary experiments. Nakagawa T; Maeda N; Cekic O; Fujikado T; Tano Y; Murakami A; Yoshimura M; Mori Y; Sasaki T; Kitano H; Owa S J Cataract Refract Surg; 2008 Jun; 34(6):1019-23. PubMed ID: 18499012 [TBL] [Abstract][Full Text] [Related]
8. Determination of excimer laser ablation rates of corneal tissue using wax impressions of ablation craters and white-light interferometry. Fisher BT; Hahn DW Ophthalmic Surg Lasers Imaging; 2004; 35(1):41-51. PubMed ID: 14750763 [TBL] [Abstract][Full Text] [Related]
9. Initial surface temperature of PMMA plates used for daily laser calibration affects the predictability of corneal refractive surgery. Wernli J; Schumacher S; Wuellner C; Donitzky C; Mrochen M J Refract Surg; 2012 Sep; 28(9):639-44. PubMed ID: 22947292 [TBL] [Abstract][Full Text] [Related]
10. Investigation of corneal ablation efficiency using ultraviolet 213-nm solid state laser pulses. Dair GT; Pelouch WS; van Saarloos PP; Lloyd DJ; Linares SM; Reinholz F Invest Ophthalmol Vis Sci; 1999 Oct; 40(11):2752-6. PubMed ID: 10509676 [TBL] [Abstract][Full Text] [Related]
11. Thermographic Behavior of the Cornea During Treatment With Two Excimer Laser Platforms. Haber-Olguin A; Polania-Baron EJ; Trujillo-Trujillo F; Graue Hernandez EO Transl Vis Sci Technol; 2021 Aug; 10(9):27. PubMed ID: 34427627 [TBL] [Abstract][Full Text] [Related]
12. Suitability of Filofocon A and PMMA for experimental models in excimer laser ablation refractive surgery. Dorronsoro C; Siegel J; Remon L; Marcos S Opt Express; 2008 Dec; 16(25):20955-67. PubMed ID: 19065235 [TBL] [Abstract][Full Text] [Related]
13. High-speed recording of thermal load during laser trans-epithelial corneal refractive surgery using a 750Hz ablation system. De Ortueta D; Arba-Mosquera S; Magnago T J Optom; 2019; 12(2):84-91. PubMed ID: 30037645 [TBL] [Abstract][Full Text] [Related]
14. Experimental and clinical investigation of efficiency and ablation profiles of new solid-state deep-ultraviolet laser for vision correction. Roszkowska AM; Korn G; Lenzner M; Kirsch M; Kittelmann O; Zatonski R; Ferreri P; Ferreri G J Cataract Refract Surg; 2004 Dec; 30(12):2536-42. PubMed ID: 15617921 [TBL] [Abstract][Full Text] [Related]
15. Ablation of the cornea by using a low-energy excimer laser. Unkroth A; Kleinschmidt J; Ziegler W; Hofmann B; Jütte M Graefes Arch Clin Exp Ophthalmol; 1993 May; 231(5):303-7. PubMed ID: 8319921 [TBL] [Abstract][Full Text] [Related]
17. Use of a six-dimensional eye-tracker in corneal laser refractive surgery with the SCHWIND AMARIS TotalTech laser. Arba Mosquera S; Arbelaez MC J Refract Surg; 2011 Aug; 27(8):582-90. PubMed ID: 21323240 [TBL] [Abstract][Full Text] [Related]
18. Do environmental factors influence excimer laser pulse fluence and efficacy? Dantas PE; Martins CL; de Souza LB; Dantas MC J Refract Surg; 2007 Mar; 23(3):307-9. PubMed ID: 17385299 [TBL] [Abstract][Full Text] [Related]
19. Measurement of the surface temperature of the cornea during ArF excimer laser ablation by thermal radiometry with a 15-nanosecond time response. Ishihara M; Arai T; Sato S; Morimoto Y; Obara M; Kikuchi M Lasers Surg Med; 2002; 30(1):54-9. PubMed ID: 11857605 [TBL] [Abstract][Full Text] [Related]
20. Electron microscopy of surface smoothness of porcine corneas and acrylic plates with four brands of excimer laser. Thomas JW; Mitra S; Chuang AZ; Yee RW J Refract Surg; 2003; 19(6):623-8. PubMed ID: 14640426 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]