These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 31758601)

  • 1. Spatiotemporal landscape genetics: Investigating ecology and evolution through space and time.
    Fenderson LE; Kovach AI; Llamas B
    Mol Ecol; 2020 Jan; 29(2):218-246. PubMed ID: 31758601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrated framework to identify wildlife populations under threat from climate change.
    Razgour O; Taggart JB; Manel S; Juste J; Ibáñez C; Rebelo H; Alberdi A; Jones G; Park K
    Mol Ecol Resour; 2018 Jan; 18(1):18-31. PubMed ID: 28649779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Landscape genetics in a changing world: disentangling historical and contemporary influences and inferring change.
    Epps CW; Keyghobadi N
    Mol Ecol; 2015 Dec; 24(24):6021-40. PubMed ID: 26547281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Better forecasts of range dynamics using genetic data.
    Fordham DA; Brook BW; Moritz C; Nogués-Bravo D
    Trends Ecol Evol; 2014 Aug; 29(8):436-43. PubMed ID: 24951394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Union of phylogeography and landscape genetics.
    Rissler LJ
    Proc Natl Acad Sci U S A; 2016 Jul; 113(29):8079-86. PubMed ID: 27432989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the interpretability of climate landscape metrics: An ecological risk analysis of Japan's Marine Protected Areas.
    García Molinos J; Takao S; Kumagai NH; Poloczanska ES; Burrows MT; Fujii M; Yamano H
    Glob Chang Biol; 2017 Oct; 23(10):4440-4452. PubMed ID: 28211249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatially explicit models of dynamic histories: examination of the genetic consequences of Pleistocene glaciation and recent climate change on the American Pika.
    Brown JL; Knowles LL
    Mol Ecol; 2012 Aug; 21(15):3757-75. PubMed ID: 22702844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biogeographic inferences across spatial and evolutionary scales.
    Wishingrad V; Thomson RC
    Mol Ecol; 2023 Apr; 32(8):2055-2070. PubMed ID: 36695049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studying the effect of environmental change on biotic evolution: past genetic contributions, current work and future directions.
    van Tuinen M; Ramakrishnan U; Hadly EA
    Philos Trans A Math Phys Eng Sci; 2004 Dec; 362(1825):2795-820. PubMed ID: 15539371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Population-level genetic variation and climate change in a biodiversity hotspot.
    Schierenbeck KA
    Ann Bot; 2017 Jan; 119(2):215-228. PubMed ID: 28069633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for evolutionary change associated with the recent range expansion of the British butterfly, Aricia agestis, in response to climate change.
    Buckley J; Butlin RK; Bridle JR
    Mol Ecol; 2012 Jan; 21(2):267-80. PubMed ID: 22118243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecological and methodological drivers of species' distribution and phenology responses to climate change.
    Brown CJ; O'Connor MI; Poloczanska ES; Schoeman DS; Buckley LB; Burrows MT; Duarte CM; Halpern BS; Pandolfi JM; Parmesan C; Richardson AJ
    Glob Chang Biol; 2016 Apr; 22(4):1548-60. PubMed ID: 26661135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Did Late Pleistocene climate change result in parallel genetic structure and demographic bottlenecks in sympatric Central African crocodiles, Mecistops and Osteolaemus?
    Shirley MH; Austin JD
    Mol Ecol; 2017 Nov; 26(22):6463-6477. PubMed ID: 29024142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tracking climate change in a dispersal-limited species: reduced spatial and genetic connectivity in a montane salamander.
    Velo-Antón G; Parra JL; Parra-Olea G; Zamudio KR
    Mol Ecol; 2013 Jun; 22(12):3261-78. PubMed ID: 23710831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A climate change context for the decline of a foundation tree species in south-western Australia: insights from phylogeography and species distribution modelling.
    Dalmaris E; Ramalho CE; Poot P; Veneklaas EJ; Byrne M
    Ann Bot; 2015 Nov; 116(6):941-52. PubMed ID: 25851142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation by instability: Historical climate change shapes population structure and genomic divergence of treefrogs in the Neotropical Cerrado savanna.
    Vasconcellos MM; Colli GR; Weber JN; Ortiz EM; Rodrigues MT; Cannatella DC
    Mol Ecol; 2019 Apr; 28(7):1748-1764. PubMed ID: 30742734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Past climate change drives current genetic structure of an endangered freshwater mussel species.
    Inoue K; Lang BK; Berg DJ
    Mol Ecol; 2015 Apr; 24(8):1910-26. PubMed ID: 25782031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrative conservation genetics: Prioritizing populations using climate predictions, adaptive potential and habitat connectivity.
    Hoban S
    Mol Ecol Resour; 2018 Jan; 18(1):14-17. PubMed ID: 29393598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disequilibrium vegetation dynamics under future climate change.
    Svenning JC; Sandel B
    Am J Bot; 2013 Jul; 100(7):1266-86. PubMed ID: 23757445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Population Genetics and Demography Unite Ecology and Evolution.
    Lowe WH; Kovach RP; Allendorf FW
    Trends Ecol Evol; 2017 Feb; 32(2):141-152. PubMed ID: 28089120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.