These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 31758619)
1. Elucidation of artefacts in proton transfer reaction time-of-flight mass spectrometers. Salazar Gómez JI; Klucken C; Sojka M; Masliuk L; Lunkenbein T; Schlögl R; Ruland H J Mass Spectrom; 2019 Dec; 54(12):987-1002. PubMed ID: 31758619 [TBL] [Abstract][Full Text] [Related]
2. Determination of trace compounds and artifacts in nitrogen background measurements by proton transfer reaction time-of-flight mass spectrometry under dry and humid conditions. Salazar Gómez JI; Sojka M; Klucken C; Schlögl R; Ruland H J Mass Spectrom; 2021 Aug; 56(8):e4777. PubMed ID: 34291848 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of a New Reagent-Ion Source and Focusing Ion-Molecule Reactor for Use in Proton-Transfer-Reaction Mass Spectrometry. Krechmer J; Lopez-Hilfiker F; Koss A; Hutterli M; Stoermer C; Deming B; Kimmel J; Warneke C; Holzinger R; Jayne J; Worsnop D; Fuhrer K; Gonin M; de Gouw J Anal Chem; 2018 Oct; 90(20):12011-12018. PubMed ID: 30220198 [TBL] [Abstract][Full Text] [Related]
4. Proton transfer reaction-mass spectrometry applications in medical research. Herbig J; Amann A J Breath Res; 2009 Jun; 3(2):020201. PubMed ID: 21383455 [TBL] [Abstract][Full Text] [Related]
5. Ion cyclotron resonance spectroscopy. Cyclotron double resonance provides a new technique for the study of ion-molecule reaction mechanisms. Baldeschwieler JD Science; 1968 Jan; 159(3812):263-73. PubMed ID: 4863791 [TBL] [Abstract][Full Text] [Related]
6. On quantitative determination of volatile organic compound concentrations using proton transfer reaction time-of-flight mass spectrometry. Cappellin L; Karl T; Probst M; Ismailova O; Winkler PM; Soukoulis C; Aprea E; Märk TD; Gasperi F; Biasioli F Environ Sci Technol; 2012 Feb; 46(4):2283-90. PubMed ID: 22296026 [TBL] [Abstract][Full Text] [Related]
7. The potential of NO Hegen O; Salazar Gómez JI; Schlögl R; Ruland H Mass Spectrom Rev; 2023; 42(5):1688-1726. PubMed ID: 35076949 [TBL] [Abstract][Full Text] [Related]
8. Differentiation of isomeric compounds by two-stage proton transfer reaction time-of-flight mass spectrometry. Inomata S; Tanimoto H J Am Soc Mass Spectrom; 2008 Mar; 19(3):325-31. PubMed ID: 18082419 [TBL] [Abstract][Full Text] [Related]
9. Detection of Ketones by a Novel Technology: Dipolar Proton Transfer Reaction Mass Spectrometry (DP-PTR-MS). Pan Y; Zhang Q; Zhou W; Zou X; Wang H; Huang C; Shen C; Chu Y J Am Soc Mass Spectrom; 2017 May; 28(5):873-879. PubMed ID: 28315236 [TBL] [Abstract][Full Text] [Related]
10. Study of gas-phase reactions of NO Li J; Du X; Guo T; Peng Z; Xu L; Dong J; Cheng P; Zhou Z J Mass Spectrom; 2017 Dec; 52(12):830-836. PubMed ID: 28885753 [TBL] [Abstract][Full Text] [Related]
11. Proton-Transfer-Reaction Mass Spectrometry: Applications in Atmospheric Sciences. Yuan B; Koss AR; Warneke C; Coggon M; Sekimoto K; de Gouw JA Chem Rev; 2017 Nov; 117(21):13187-13229. PubMed ID: 28976748 [TBL] [Abstract][Full Text] [Related]
12. Modified proton transfer reaction mass spectrometry (PTR-MS) operating conditions for in vitro and in vivo analysis of wine aroma. Sémon E; Arvisenet G; Guichard E; Le Quéré JL J Mass Spectrom; 2018 Jan; 53(1):65-77. PubMed ID: 28981178 [TBL] [Abstract][Full Text] [Related]
13. Proton transfer reaction ion trap mass spectrometer. Prazeller P; Palmer PT; Boscaini E; Jobson T; Alexander M Rapid Commun Mass Spectrom; 2003; 17(14):1593-9. PubMed ID: 12845585 [TBL] [Abstract][Full Text] [Related]
14. Selected ion flow tube studies of the reactions of H Omezzine Gnioua M; Swift SJ; Španěl P Phys Chem Chem Phys; 2024 Oct; 26(41):26585-26593. PubMed ID: 39400284 [TBL] [Abstract][Full Text] [Related]
15. Extending the dynamic range of proton transfer reaction time-of-flight mass spectrometers by a novel dead time correction. Cappellin L; Biasioli F; Schuhfried E; Soukoulis C; Märk TD; Gasperi F Rapid Commun Mass Spectrom; 2011 Jan; 25(1):179-83. PubMed ID: 21154901 [TBL] [Abstract][Full Text] [Related]
16. Development of microwave plasma proton transfer reaction mass spectrometry (MWP-PTR-MS) for on-line monitoring of volatile organic compounds: Design, characterization and performance evaluation. Zhao Z; Dai J; Wang T; Niu G; He F; Duan Y Talanta; 2020 Feb; 208():120468. PubMed ID: 31816683 [TBL] [Abstract][Full Text] [Related]
17. PTR-TOF-MS and data-mining methods for rapid characterisation of agro-industrial samples: influence of milk storage conditions on the volatile compounds profile of Trentingrana cheese. Fabris A; Biasioli F; Granitto PM; Aprea E; Cappellin L; Schuhfried E; Soukoulis C; Märk TD; Gasperi F; Endrizzi I J Mass Spectrom; 2010 Sep; 45(9):1065-74. PubMed ID: 20690164 [TBL] [Abstract][Full Text] [Related]
18. Development of a proton-transfer reaction-linear ion trap mass spectrometer for quantitative determination of volatile organic compounds. Mielke LH; Erickson DE; McLuckey SA; Müller M; Wisthaler A; Hansel A; Shepson PB Anal Chem; 2008 Nov; 80(21):8171-7. PubMed ID: 18841942 [TBL] [Abstract][Full Text] [Related]
19. A novel discharge source of hydronium ions for proton transfer reaction ionization: design, characterization, and performance. Inomata S; Tanimoto H; Aoki N; Hirokawa J; Sadanaga Y Rapid Commun Mass Spectrom; 2006; 20(6):1025-9. PubMed ID: 16482524 [TBL] [Abstract][Full Text] [Related]
20. Detecting Hexafluoroisopropanol Using Soft Chemical Ionization Mass Spectrometry and Analytical Applications to Exhaled Breath. Weiss F; Chawaguta A; Tolpeit M; Volk V; Schiller A; Ruzsanyi V; Hillinger P; Lederer W; Märk TD; Mayhew CA J Am Soc Mass Spectrom; 2023 May; 34(5):958-968. PubMed ID: 36995741 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]