BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 31758702)

  • 1. Ca
    Roach KM; Bradding P
    Br J Pharmacol; 2020 Mar; 177(5):1003-1024. PubMed ID: 31758702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased constitutive αSMA and Smad2/3 expression in idiopathic pulmonary fibrosis myofibroblasts is KCa3.1-dependent.
    Roach KM; Wulff H; Feghali-Bostwick C; Amrani Y; Bradding P
    Respir Res; 2014 Dec; 15(1):155. PubMed ID: 25476248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The KCa3.1 blocker TRAM-34 inhibits proliferation of fibroblasts in paraquat-induced pulmonary fibrosis.
    Xie H; Lu J; Zhu Y; Meng X; Wang R
    Toxicol Lett; 2018 Oct; 295():408-415. PubMed ID: 30036685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The K+ channel KCa3.1 as a novel target for idiopathic pulmonary fibrosis.
    Roach KM; Duffy SM; Coward W; Feghali-Bostwick C; Wulff H; Bradding P
    PLoS One; 2013; 8(12):e85244. PubMed ID: 24392001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model of human lung fibrogenesis for the assessment of anti-fibrotic strategies in idiopathic pulmonary fibrosis.
    Roach KM; Sutcliffe A; Matthews L; Elliott G; Newby C; Amrani Y; Bradding P
    Sci Rep; 2018 Jan; 8(1):342. PubMed ID: 29321510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. K⁺-channel inhibition reduces portal perfusion pressure in fibrotic rats and fibrosis associated characteristics of hepatic stellate cells.
    Freise C; Heldwein S; Erben U; Hoyer J; Köhler R; Jöhrens K; Patsenker E; Ruehl M; Seehofer D; Stickel F; Somasundaram R
    Liver Int; 2015 Apr; 35(4):1244-52. PubMed ID: 25212242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of the K
    Organ L; Bacci B; Koumoundouros E; Kimpton WG; Samuel CS; Nowell CJ; Bradding P; Roach KM; Westall G; Jaffar J; Snibson KJ
    Am J Respir Cell Mol Biol; 2017 Apr; 56(4):539-550. PubMed ID: 28060543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Renal fibrosis is attenuated by targeted disruption of KCa3.1 potassium channels.
    Grgic I; Kiss E; Kaistha BP; Busch C; Kloss M; Sautter J; Müller A; Kaistha A; Schmidt C; Raman G; Wulff H; Strutz F; Gröne HJ; Köhler R; Hoyer J
    Proc Natl Acad Sci U S A; 2009 Aug; 106(34):14518-23. PubMed ID: 19706538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic coupling between TRPV4 and Ca
    Li Y; Hu H; Tian JB; Zhu MX; O'Neil RG
    Am J Physiol Renal Physiol; 2017 Jun; 312(6):F1081-F1089. PubMed ID: 28274924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trafficking of intermediate (KCa3.1) and small (KCa2.x) conductance, Ca(2+)-activated K(+) channels: a novel target for medicinal chemistry efforts?
    Balut CM; Hamilton KL; Devor DC
    ChemMedChem; 2012 Oct; 7(10):1741-55. PubMed ID: 22887933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacology of Small- and Intermediate-Conductance Calcium-Activated Potassium Channels.
    Brown BM; Shim H; Christophersen P; Wulff H
    Annu Rev Pharmacol Toxicol; 2020 Jan; 60():219-240. PubMed ID: 31337271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-staining of K
    Brömmel K; Maskri S; Bulk E; Pethő Z; Rieke M; Budde T; Koch O; Schwab A; Wünsch B
    ChemMedChem; 2020 Dec; 15(24):2462-2469. PubMed ID: 33043595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacological gating modulation of small- and intermediate-conductance Ca(2+)-activated K(+) channels (KCa2.x and KCa3.1).
    Christophersen P; Wulff H
    Channels (Austin); 2015; 9(6):336-43. PubMed ID: 26217968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional KCa3.1 K+ channels are required for human fibrocyte migration.
    Cruse G; Singh SR; Duffy SM; Doe C; Saunders R; Brightling CE; Bradding P
    J Allergy Clin Immunol; 2011 Dec; 128(6):1303-1309.e2. PubMed ID: 21872912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. K
    Bonito B; Sauter DR; Schwab A; Djamgoz MB; Novak I
    Pflugers Arch; 2016 Nov; 468(11-12):1865-1875. PubMed ID: 27752766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium-dependent potassium channels control proliferation of cardiac progenitor cells and bone marrow-derived mesenchymal stem cells.
    Vigneault P; Naud P; Qi X; Xiao J; Villeneuve L; Davis DR; Nattel S
    J Physiol; 2018 Jun; 596(12):2359-2379. PubMed ID: 29574723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role and mechanism of K
    Ma XZ; Pang ZD; Wang JH; Song Z; Zhao LM; Du XJ; Deng XL
    Exp Cell Res; 2018 Aug; 369(2):208-217. PubMed ID: 29792849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The stimulating effects of nitric oxide on intermediate conductance Ca²⁺-activated K⁺ channels in human dermal fibroblasts through PKG pathways but not the PKA pathways.
    Bae H; Lee HJ; Kim K; Kim JH; Kim T; Ko JH; Bang H; Lim I
    Chin J Physiol; 2014 Jun; 57(3):137-51. PubMed ID: 24826782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional ion channels in mouse bone marrow mesenchymal stem cells.
    Tao R; Lau CP; Tse HF; Li GR
    Am J Physiol Cell Physiol; 2007 Nov; 293(5):C1561-7. PubMed ID: 17699636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltage dependence of the Ca(2+)-activated K(+) channel K(Ca)3.1 in human erythroleukemia cells.
    Stoneking CJ; Shivakumar O; Thomas DN; Colledge WH; Mason MJ
    Am J Physiol Cell Physiol; 2013 May; 304(9):C858-72. PubMed ID: 23407879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.