These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 31758804)

  • 1. Plastic transport systems of rice for mineral elements in response to diverse soil environmental changes.
    Wang P; Yamaji N; Inoue K; Mochida K; Ma JF
    New Phytol; 2020 Apr; 226(1):156-169. PubMed ID: 31758804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cadmium uptake and transport processes in rice revealed by stable isotope fractionation and Cd-related gene expression.
    Zhong S; Li X; Li F; Huang Y; Liu T; Yin H; Qiao J; Chen G; Huang F
    Sci Total Environ; 2022 Feb; 806(Pt 2):150633. PubMed ID: 34592274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excess copper inhibits the growth of rice seedlings by decreasing uptake of nitrate.
    Huo K; Shangguan X; Xia Y; Shen Z; Chen C
    Ecotoxicol Environ Saf; 2020 Mar; 190():110105. PubMed ID: 31884325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A putative 6-transmembrane nitrate transporter OsNRT1.1b plays a key role in rice under low nitrogen.
    Fan X; Feng H; Tan Y; Xu Y; Miao Q; Xu G
    J Integr Plant Biol; 2016 Jun; 58(6):590-9. PubMed ID: 26220694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transporters involved in mineral nutrient uptake in rice.
    Sasaki A; Yamaji N; Ma JF
    J Exp Bot; 2016 Jun; 67(12):3645-53. PubMed ID: 26931170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioimaging of multiple elements by high-resolution LA-ICP-MS reveals altered distribution of mineral elements in the nodes of rice mutants.
    Yamaji N; Ma JF
    Plant J; 2019 Sep; 99(6):1254-1263. PubMed ID: 31108003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional characterization of a putative nitrate transporter gene promoter from rice.
    Hu TZ; Cao KM; Xia M; Wang XP
    Acta Biochim Biophys Sin (Shanghai); 2006 Nov; 38(11):795-802. PubMed ID: 17091197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water management affects arsenic uptake and translocation by regulating arsenic bioavailability, transporter expression and thiol metabolism in rice (Oryza sativa L.).
    Cao Z; Pan J; Yang Y; Cao Z; Xu P; Chen M; Guan M
    Ecotoxicol Environ Saf; 2020 Dec; 206():111208. PubMed ID: 32871521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Irrigation with Magnetized Water Alleviates the Harmful Effect of Saline-Alkaline Stress on Rice Seedlings.
    Ma C; Li Q; Song Z; Su L; Tao W; Zhou B; Wang Q
    Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges.
    Yan M; Fan X; Feng H; Miller AJ; Shen Q; Xu G
    Plant Cell Environ; 2011 Aug; 34(8):1360-72. PubMed ID: 21486304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfer of technetium from soil to paddy and upland rice.
    Yanagisawa K; Muramatsu Y
    J Radiat Res; 1995 Sep; 36(3):171-8. PubMed ID: 8558493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of nitrate transport in four different rice (Oryza sativa L.) cultivars.
    Fan X; Shen Q; Ma Z; Zhu H; Yin X; Miller AJ
    Sci China C Life Sci; 2005 Sep; 48 Suppl 2():897-911. PubMed ID: 20549444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. OsNRT2.4 encodes a dual-affinity nitrate transporter and functions in nitrate-regulated root growth and nitrate distribution in rice.
    Wei J; Zheng Y; Feng H; Qu H; Fan X; Yamaji N; Ma JF; Xu G
    J Exp Bot; 2018 Feb; 69(5):1095-1107. PubMed ID: 29385597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The OsAMT1.1 gene functions in ammonium uptake and ammonium-potassium homeostasis over low and high ammonium concentration ranges.
    Li C; Tang Z; Wei J; Qu H; Xie Y; Xu G
    J Genet Genomics; 2016 Nov; 43(11):639-649. PubMed ID: 27889499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcription Factor
    Wu Y; Yang W; Wei J; Yoon H; An G
    Mol Cells; 2017 Mar; 40(3):178-185. PubMed ID: 28292004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of As accumulation and speciation in water spinach (Ipomoea aquatica Forssk.) grown in As-elevated soils under flooding versus upland conditions.
    Liao YJ; Syu CH; Lee DY
    J Hazard Mater; 2021 Aug; 415():125711. PubMed ID: 34088193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of iron plaque and fatty acids on the transfer of BDE-209 from soil to rice under iron mineral Fenton-like oxidation condition.
    Gao Y; Tang X; Yin M; Cao H; Jian H; Wang J; Jia W; Wang C; Sun H
    Sci Total Environ; 2021 Jun; 772():145554. PubMed ID: 33770853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning and functional characterization of a constitutively expressed nitrate transporter gene, OsNRT1, from rice.
    Lin CM; Koh S; Stacey G; Yu SM; Lin TY; Tsay YF
    Plant Physiol; 2000 Feb; 122(2):379-88. PubMed ID: 10677431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.).
    Colmer TD
    Ann Bot; 2003 Jan; 91 Spec No(2):301-9. PubMed ID: 12509350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of nitrate transport in four different rice (Oryza sativa L.) cultivars.
    Fan X; Shen Q; Ma Z; Zhu H; Yin X; Miller AJ
    Sci China C Life Sci; 2005 Dec; 48 Spec No():897-911. PubMed ID: 16512211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.