BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 31758944)

  • 1. Inositol 1,4,5-trisphosphate receptor 2 as a novel marker of vasculature to delineate processes of cardiopulmonary development.
    Ishizaki-Asami R; Uchida K; Tsuchihashi T; Shibata A; Kodo K; Emoto K; Mikoshiba K; Takahashi T; Yamagishi H
    Dev Biol; 2020 Feb; 458(2):237-245. PubMed ID: 31758944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Type 2 inositol 1,4,5-trisphosphate receptor inhibits the progression of pulmonary arterial hypertension via calcium signaling and apoptosis.
    Shibata A; Uchida K; Kodo K; Miyauchi T; Mikoshiba K; Takahashi T; Yamagishi H
    Heart Vessels; 2019 Apr; 34(4):724-734. PubMed ID: 30460575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inositol 1,4,5-trisphosphate receptors are essential for the development of the second heart field.
    Nakazawa M; Uchida K; Aramaki M; Kodo K; Yamagishi C; Takahashi T; Mikoshiba K; Yamagishi H
    J Mol Cell Cardiol; 2011 Jul; 51(1):58-66. PubMed ID: 21382375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The type 2 inositol 1,4,5-trisphosphate receptor, emerging functions for an intriguing Ca²⁺-release channel.
    Vervloessem T; Yule DI; Bultynck G; Parys JB
    Biochim Biophys Acta; 2015 Sep; 1853(9):1992-2005. PubMed ID: 25499268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endothelin-1-induced arrhythmogenic Ca2+ signaling is abolished in atrial myocytes of inositol-1,4,5-trisphosphate(IP3)-receptor type 2-deficient mice.
    Li X; Zima AV; Sheikh F; Blatter LA; Chen J
    Circ Res; 2005 Jun; 96(12):1274-81. PubMed ID: 15933266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inositol 1,4,5-trisphosphate receptors are essential for fetal-maternal connection and embryo viability.
    Yang F; Huang L; Tso A; Wang H; Cui L; Lin L; Wang X; Ren M; Fang X; Liu J; Han Z; Chen J; Ouyang K
    PLoS Genet; 2020 Apr; 16(4):e1008739. PubMed ID: 32320395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inositol 1,4,5-trisphosphate receptor subtypes are differentially distributed between smooth muscle and endothelial layers of rat arteries.
    Grayson TH; Haddock RE; Murray TP; Wojcikiewicz RJ; Hill CE
    Cell Calcium; 2004 Dec; 36(6):447-58. PubMed ID: 15488594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. T-cell-receptor signalling in inositol 1,4,5-trisphosphate receptor (IP3R) type-1-deficient mice: is IP3R type 1 essential for T-cell-receptor signalling?
    Hirota J; Baba M; Matsumoto M; Furuichi T; Takatsu K; Mikoshiba K
    Biochem J; 1998 Aug; 333 ( Pt 3)(Pt 3):615-9. PubMed ID: 9677320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene knock-outs of inositol 1,4,5-trisphosphate receptors types 1 and 2 result in perturbation of cardiogenesis.
    Uchida K; Aramaki M; Nakazawa M; Yamagishi C; Makino S; Fukuda K; Nakamura T; Takahashi T; Mikoshiba K; Yamagishi H
    PLoS One; 2010 Sep; 5(9):. PubMed ID: 20824138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coronary stem development in wild-type and Tbx1 null mouse hearts.
    Théveniau-Ruissy M; Pérez-Pomares JM; Parisot P; Baldini A; Miquerol L; Kelly RG
    Dev Dyn; 2016 Apr; 245(4):445-59. PubMed ID: 26708418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prdm1 functions in the mesoderm of the second heart field, where it interacts genetically with Tbx1, during outflow tract morphogenesis in the mouse embryo.
    Vincent SD; Mayeuf-Louchart A; Watanabe Y; Brzezinski JA; Miyagawa-Tomita S; Kelly RG; Buckingham M
    Hum Mol Genet; 2014 Oct; 23(19):5087-101. PubMed ID: 24821700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dysregulation of TBX1 dosage in the anterior heart field results in congenital heart disease resembling the 22q11.2 duplication syndrome.
    Hasten E; McDonald-McGinn DM; Crowley TB; Zackai E; Emanuel BS; Morrow BE; Racedo SE
    Hum Mol Genet; 2018 Jun; 27(11):1847-1857. PubMed ID: 29509905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of inositol 1,4,5-trisphosphate formation in the voltage-dependent regulation of the Ca(2+) concentration in porcine coronary arterial smooth muscle cells.
    Yamamura H; Ohya S; Muraki K; Imaizumi Y
    J Pharmacol Exp Ther; 2012 Aug; 342(2):486-96. PubMed ID: 22588257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced dosage of β-catenin provides significant rescue of cardiac outflow tract anomalies in a Tbx1 conditional null mouse model of 22q11.2 deletion syndrome.
    Racedo SE; Hasten E; Lin M; Devakanmalai GS; Guo T; Ozbudak EM; Cai CL; Zheng D; Morrow BE
    PLoS Genet; 2017 Mar; 13(3):e1006687. PubMed ID: 28346476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The del22q11.2 candidate gene Tbx1 controls regional outflow tract identity and coronary artery patterning.
    Théveniau-Ruissy M; Dandonneau M; Mesbah K; Ghez O; Mattei MG; Miquerol L; Kelly RG
    Circ Res; 2008 Jul; 103(2):142-8. PubMed ID: 18583714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of the Inositol 1,4,5-Trisphosphate Receptor and the Ryanodine Receptor Ca
    Nordenskjöld F; Andersson B; Islam MS
    Adv Exp Med Biol; 2020; 1131():271-279. PubMed ID: 31646514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tbx1 has a dual role in the morphogenesis of the cardiac outflow tract.
    Xu H; Morishima M; Wylie JN; Schwartz RJ; Bruneau BG; Lindsay EA; Baldini A
    Development; 2004 Jul; 131(13):3217-27. PubMed ID: 15175244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inositol 1,4,5-trisphosphate receptor-isoform diversity in cell death and survival.
    Ivanova H; Vervliet T; Missiaen L; Parys JB; De Smedt H; Bultynck G
    Biochim Biophys Acta; 2014 Oct; 1843(10):2164-83. PubMed ID: 24642269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathophysiological consequences of isoform-specific IP
    Kerkhofs M; Seitaj B; Ivanova H; Monaco G; Bultynck G; Parys JB
    Biochim Biophys Acta Mol Cell Res; 2018 Nov; 1865(11 Pt B):1707-1717. PubMed ID: 29906486
    [TBL] [Abstract