BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 31759103)

  • 1. Investigation on the effect of deep eutectic formation on drug-polymer miscibility and skin permeability of rotigotine drug-in-adhesive patch.
    Liu C; Qu X; Song L; Shang R; Wan X; Fang L
    Int J Pharm; 2020 Jan; 574():118852. PubMed ID: 31759103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of Tizanidine Drug-in-Adhesive Patch: Molecular Mechanism of Permeation Enhancer on Regulating Miscibility and Drug Release by Affecting the Status of Ion-Pair in Polymer Matrix.
    Zhong T; Ruan J; Liu C; Quan P; Fang L
    J Pharm Sci; 2020 Aug; 109(8):2501-2511. PubMed ID: 32387424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Drug Loading in the Drug-in-Adhesive Transdermal Patch Utilizing a Drug-Ionic Liquid Strategy: Insight into the Role of Ionic Hydrogen Bonding.
    Yang D; Liu C; Piao H; Quan P; Fang L
    Mol Pharm; 2021 Mar; 18(3):1157-1166. PubMed ID: 33504154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and in vitro evaluation of pressure sensitive adhesive patch for the transdermal delivery of galantamine: Effect of penetration enhancers and crystallization inhibition.
    Ameen D; Michniak-Kohn B
    Eur J Pharm Biopharm; 2019 Jun; 139():262-271. PubMed ID: 30981946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug in adhesive patch of palonosetron: Effect of pressure sensitive adhesive on drug skin permeation and in vitro-in vivo correlation.
    Liu C; Hui M; Quan P; Fang L
    Int J Pharm; 2016 Sep; 511(2):1088-97. PubMed ID: 27521703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a drug-in-adhesive patch combining ion pair and chemical enhancer strategy for transdermal delivery of zaltoprofen: pharmacokinetic, pharmacodynamic and in vitro/in vivo correlation evaluation.
    Cui H; Quan P; Zhou Z; Fang L
    Drug Deliv; 2016 Nov; 23(9):3461-3470. PubMed ID: 27257038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of molecular mobility of pressure-sensitive-adhesive in oxybutynin patch in vitro and in vivo: Effect of sorbitan monooleate on drug release and patch mechanical property.
    Wang W; Liu C; Luo Z; Wan X; Fang L
    Eur J Pharm Sci; 2018 Sep; 122():116-124. PubMed ID: 29928984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the permeation enhancer strategy on benzoylaconitine transdermal patch: the relationship between transdermal enhancement strength and physicochemical properties of permeation enhancer.
    Liu C; Farah N; Weng W; Jiao B; Shen M; Fang L
    Eur J Pharm Sci; 2019 Oct; 138():105009. PubMed ID: 31306781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of transdermal therapeutic formulation of CNS5161, a novel NMDA receptor antagonist, by utilizing pressure-sensitive adhesives II: improved transdermal absorption and evaluation of efficacy and safety.
    Naruse M; Ogawara K; Kimura T; Konishi R; Higaki K
    Eur J Pharm Sci; 2014 Feb; 52():86-94. PubMed ID: 24215737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of drug-in-adhesive transdermal patch for α-asarone and in vivo pharmacokinetics and efficacy evaluation.
    Hu Y; Wu YY; Xia XJ; Wu Z; Liang WQ; Gao JQ
    Drug Deliv; 2011 Jan; 18(1):84-9. PubMed ID: 20939674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of a tulobuterol patch with improved mechanical properties: effect of transdermal permeation enhancers on the release process of metal ligand-based acrylic pressure-sensitive adhesives.
    Nan L; Song H; Wang H; Mi R; Wang X; Fang L
    Drug Deliv Transl Res; 2024 Mar; 14(3):802-811. PubMed ID: 38082031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion-pair formation combined with a penetration enhancer as a dual strategy to improve the transdermal delivery of meloxicam.
    Jiang Q; Wang J; Ma P; Liu C; Sun M; Sun Y; He Z
    Drug Deliv Transl Res; 2018 Feb; 8(1):64-72. PubMed ID: 29181834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the role of ion-pair strategy in regulating nicotine release from patch: Mechanistic insights based on intermolecular interaction and mobility of pressure sensitive adhesive.
    Li Q; Wan X; Liu C; Fang L
    Eur J Pharm Sci; 2018 Jul; 119():102-111. PubMed ID: 29627622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of carboxyl group of pressure sensitive adhesive in controlled release of propranolol in transdermal patch: Quantitative determination of ionic interaction and molecular mechanism characterization.
    Yang D; Wan X; Quan P; Liu C; Fang L
    Eur J Pharm Sci; 2018 Mar; 115():330-338. PubMed ID: 29414309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Chemical Penetration Enhancer-Adhesive Interaction on Drug Release from Transdermal Patch: Mechanism Study Based on FT-IR Spectroscopy,
    Luo Z; Liu C; Quan P; Zhang Y; Fang L
    AAPS PharmSciTech; 2021 Jun; 22(5):198. PubMed ID: 34195881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A systemic evaluation of drug in acrylic pressure sensitive adhesive patch in vitro and in vivo: The roles of intermolecular interaction and adhesive mobility variation in drug controlled release.
    Liu C; Quan P; Li S; Zhao Y; Fang L
    J Control Release; 2017 Apr; 252():83-94. PubMed ID: 28274741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug recrystallization in drug-in-adhesive transdermal delivery system: A case study of deteriorating the mechanical and rheological characteristics of testosterone TDS.
    Mohamed LA; Kamal N; Elfakhri KH; Willett D; Wokovich A; Strasinger C; Cruz CN; Raney SG; Ashraf M; Zidan AS
    Int J Pharm; 2020 Mar; 578():119132. PubMed ID: 32057892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transdermal enhancement strategy of ketoprofen and teriflunomide: The effect of enhanced drug-drug intermolecular interaction by permeation enhancer on drug release of compound transdermal patch.
    Liu C; Guan Y; Tian Q; Shi X; Fang L
    Int J Pharm; 2019 Dec; 572():118800. PubMed ID: 31678378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled transdermal delivery of fentanyl: characterizations of pressure-sensitive adhesives for matrix patch design.
    Roy SD; Gutierrez M; Flynn GL; Cleary GW
    J Pharm Sci; 1996 May; 85(5):491-5. PubMed ID: 8742940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formulation optimization of a drug in adhesive transdermal analgesic patch.
    Ravula R; Herwadkar AK; Abla MJ; Little J; Banga AK
    Drug Dev Ind Pharm; 2016; 42(6):862-70. PubMed ID: 26288995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.