These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
366 related articles for article (PubMed ID: 31759106)
21. Gene delivery by cationic lipids: in and out of an endosome. Hoekstra D; Rejman J; Wasungu L; Shi F; Zuhorn I Biochem Soc Trans; 2007 Feb; 35(Pt 1):68-71. PubMed ID: 17233603 [TBL] [Abstract][Full Text] [Related]
22. Improved intracellular delivery of peptide- and lipid-nanoplexes by natural glycosides. Weng A; Manunta MD; Thakur M; Gilabert-Oriol R; Tagalakis AD; Eddaoudi A; Munye MM; Vink CA; Wiesner B; Eichhorst J; Melzig MF; Hart SL J Control Release; 2015 May; 206():75-90. PubMed ID: 25758332 [TBL] [Abstract][Full Text] [Related]
23. Amphiphilic polymers formed from ring-opening polymerization: a strategy for the enhancement of gene delivery. Zhang YM; Huang Z; Zhang J; Wu WX; Liu YH; Yu XQ Biomater Sci; 2017 Mar; 5(4):718-729. PubMed ID: 28197596 [TBL] [Abstract][Full Text] [Related]
24. Delivery of DNA and siRNA by novel gemini-like amphiphilic peptides. Damen M; Aarbiou J; van Dongen SF; Buijs-Offerman RM; Spijkers PP; van den Heuvel M; Kvashnina K; Nolte RJ; Scholte BJ; Feiters MC J Control Release; 2010 Jul; 145(1):33-9. PubMed ID: 20381554 [TBL] [Abstract][Full Text] [Related]
25. Understanding structure-activity relationships of pH-sensitive cationic lipids facilitates the rational identification of promising lipid nanoparticles for delivering siRNAs in vivo. Sato Y; Hashiba K; Sasaki K; Maeki M; Tokeshi M; Harashima H J Control Release; 2019 Feb; 295():140-152. PubMed ID: 30610950 [TBL] [Abstract][Full Text] [Related]
26. Evaluation of cellular uptake and intracellular trafficking as determining factors of gene expression for amino acid-substituted gemini surfactant-based DNA nanoparticles. Singh J; Michel D; Chitanda JM; Verrall RE; Badea I J Nanobiotechnology; 2012 Feb; 10():7. PubMed ID: 22296763 [TBL] [Abstract][Full Text] [Related]
27. Amino acid-based cationic lipids with α-tocopherol hydrophobic tail for efficient gene delivery. Yi WJ; Zheng LT; Su RC; Liu Q; Zhao ZG Chem Biol Drug Des; 2015 Nov; 86(5):1192-202. PubMed ID: 25973654 [TBL] [Abstract][Full Text] [Related]
28. Arginine-based cationic liposomes for efficient in vitro plasmid DNA delivery with low cytotoxicity. Sarker SR; Aoshima Y; Hokama R; Inoue T; Sou K; Takeoka S Int J Nanomedicine; 2013; 8():1361-75. PubMed ID: 23630419 [TBL] [Abstract][Full Text] [Related]
29. Microfluidic-Based Cationic Cholesterol Lipid siRNA Delivery Nanosystem: Highly Efficient In Vitro Gene Silencing and the Intracellular Behavior. Zhu Z; Zhang L; Sheng R; Chen J Int J Mol Sci; 2022 Apr; 23(7):. PubMed ID: 35409359 [TBL] [Abstract][Full Text] [Related]
30. Mechanistic evaluation of the transfection barriers involved in lipid-mediated gene delivery: interplay between nanostructure and composition. Pozzi D; Marchini C; Cardarelli F; Salomone F; Coppola S; Montani M; Zabaleta ME; Digman MA; Gratton E; Colapicchioni V; Caracciolo G Biochim Biophys Acta; 2014 Mar; 1838(3):957-67. PubMed ID: 24296066 [TBL] [Abstract][Full Text] [Related]
31. Comparison of the cellular transport mechanism of cationic, star-shaped polymers and liposomes in HaCat cells. Luo HC; Li N; Yan L; Mai KJ; Sun K; Wang W; Lao GJ; Yang C; Zhang LM; Ren M Int J Nanomedicine; 2017; 12():1085-1096. PubMed ID: 28223800 [TBL] [Abstract][Full Text] [Related]
32. A biomimetic lipid library for gene delivery through thiol-yne click chemistry. Li L; Zahner D; Su Y; Gruen C; Davidson G; Levkin PA Biomaterials; 2012 Nov; 33(32):8160-6. PubMed ID: 22902058 [TBL] [Abstract][Full Text] [Related]
33. Intracellular fate of octaarginine-modified liposomes in polarized MDCK cells. Fujiwara T; Akita H; Harashima H Int J Pharm; 2010 Feb; 386(1-2):122-30. PubMed ID: 19922779 [TBL] [Abstract][Full Text] [Related]
34. Enhanced siRNA delivery using cationic liposomes with new polyarginine-conjugated PEG-lipid. Kim HK; Davaa E; Myung CS; Park JS Int J Pharm; 2010 Jun; 392(1-2):141-7. PubMed ID: 20347025 [TBL] [Abstract][Full Text] [Related]
35. Cellular uptake pathways of lipid-modified cationic polymers in gene delivery to primary cells. Hsu CY; Uludağ H Biomaterials; 2012 Nov; 33(31):7834-48. PubMed ID: 22874502 [TBL] [Abstract][Full Text] [Related]
36. Factors influencing the transfection efficiency and cellular uptake mechanisms of Pluronic P123-modified polypropyleneimine/pDNA polyplexes in multidrug resistant breast cancer cells. Gu J; Hao J; Fang X; Sha X Colloids Surf B Biointerfaces; 2016 Apr; 140():83-93. PubMed ID: 26741268 [TBL] [Abstract][Full Text] [Related]
37. Gene transfection efficiency into dendritic cells is influenced by the size of cationic liposomes/DNA complexes. Inoh Y; Nagai M; Matsushita K; Nakanishi M; Furuno T Eur J Pharm Sci; 2017 May; 102():230-236. PubMed ID: 28323115 [TBL] [Abstract][Full Text] [Related]
38. Transfection efficiencies of α-tocopherylated cationic gemini lipids with hydroxyethyl bearing headgroups under high serum conditions. Maiti B; Kamra M; Karande AA; Bhattacharya S Org Biomol Chem; 2018 Mar; 16(11):1983-1993. PubMed ID: 29498723 [TBL] [Abstract][Full Text] [Related]
39. Lipodendriplexes: A promising nanocarrier for enhanced gene delivery with minimal cytotoxicity. Tariq I; Pinnapireddy SR; Duse L; Ali MY; Ali S; Amin MU; Goergen N; Jedelská J; Schäfer J; Bakowsky U Eur J Pharm Biopharm; 2019 Feb; 135():72-82. PubMed ID: 30590107 [TBL] [Abstract][Full Text] [Related]