These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 31759220)
1. Discovery of a novel quinohemoprotein from a eukaryote and its application in electrochemical devices. Takeda K; Igarashi K; Yoshida M; Nakamura N Bioelectrochemistry; 2020 Feb; 131():107372. PubMed ID: 31759220 [TBL] [Abstract][Full Text] [Related]
2. Crystal Structure of the Catalytic and Cytochrome Takeda K; Ishida T; Yoshida M; Samejima M; Ohno H; Igarashi K; Nakamura N Appl Environ Microbiol; 2019 Dec; 85(24):. PubMed ID: 31604769 [TBL] [Abstract][Full Text] [Related]
3. Characterization of a novel PQQ-dependent quinohemoprotein pyranose dehydrogenase from Coprinopsis cinerea classified into auxiliary activities family 12 in carbohydrate-active enzymes. Takeda K; Matsumura H; Ishida T; Samejima M; Ohno H; Yoshida M; Igarashi K; Nakamura N PLoS One; 2015; 10(2):e0115722. PubMed ID: 25679509 [TBL] [Abstract][Full Text] [Related]
4. pH-dependent electron transfer reaction and direct bioelectrocatalysis of the quinohemoprotein pyranose dehydrogenase. Takeda K; Matsumura H; Ishida T; Yoshida M; Igarashi K; Samejima M; Ohno H; Nakamura N Biochem Biophys Res Commun; 2016 Aug; 477(3):369-73. PubMed ID: 27338639 [TBL] [Abstract][Full Text] [Related]
5. The Pyrroloquinoline-Quinone-Dependent Pyranose Dehydrogenase from Coprinopsis cinerea Drives Lytic Polysaccharide Monooxygenase Action. Várnai A; Umezawa K; Yoshida M; Eijsink VGH Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29602785 [TBL] [Abstract][Full Text] [Related]
6. Fungal PQQ-dependent dehydrogenases and their potential in biocatalysis. Takeda K; Umezawa K; Várnai A; Eijsink VG; Igarashi K; Yoshida M; Nakamura N Curr Opin Chem Biol; 2019 Apr; 49():113-121. PubMed ID: 30580186 [TBL] [Abstract][Full Text] [Related]
7. An amperometric biosensor of L-fucose in urine for the first screening test of cancer. Takeda K; Kusuoka R; Inukai M; Igarashi K; Ohno H; Nakamura N Biosens Bioelectron; 2021 Feb; 174():112831. PubMed ID: 33288426 [TBL] [Abstract][Full Text] [Related]
8. Cellobiose dehydrogenase: Bioelectrochemical insights and applications. Scheiblbrandner S; Ludwig R Bioelectrochemistry; 2020 Feb; 131():107345. PubMed ID: 31494387 [TBL] [Abstract][Full Text] [Related]
9. Isolation and purification of PQQ-dependent lactate dehydrogenase from Gluconobacter and use for direct electron transfer at carbon and gold electrodes. Treu BL; Minteer SD Bioelectrochemistry; 2008 Nov; 74(1):73-7. PubMed ID: 18760973 [TBL] [Abstract][Full Text] [Related]
10. Comparison of direct and mediated electron transfer for cellobiose dehydrogenase from Phanerochaete sordida. Tasca F; Gorton L; Harreither W; Haltrich D; Ludwig R; Nöll G Anal Chem; 2009 Apr; 81(7):2791-8. PubMed ID: 19256522 [TBL] [Abstract][Full Text] [Related]
11. Recombinantly produced cellobiose dehydrogenase from Corynascus thermophilus for glucose biosensors and biofuel cells. Harreither W; Felice AK; Paukner R; Gorton L; Ludwig R; Sygmund C Biotechnol J; 2012 Nov; 7(11):1359-66. PubMed ID: 22815189 [TBL] [Abstract][Full Text] [Related]
12. Direct electrochemistry of Phanerochaete chrysosporium cellobiose dehydrogenase covalently attached onto gold nanoparticle modified solid gold electrodes. Matsumura H; Ortiz R; Ludwig R; Igarashi K; Samejima M; Gorton L Langmuir; 2012 Jul; 28(29):10925-33. PubMed ID: 22746277 [TBL] [Abstract][Full Text] [Related]
14. PQQ glucose dehydrogenase with novel electron transfer ability. Okuda J; Sode K Biochem Biophys Res Commun; 2004 Feb; 314(3):793-7. PubMed ID: 14741705 [TBL] [Abstract][Full Text] [Related]
15. Anchoring PQQ-Glucose Dehydrogenase with Electropolymerized Azines for the Most Efficient Bioelectrocatalysis. Komkova MA; Orlov AK; Galushin AA; Andreev EA; Karyakin AA Anal Chem; 2021 Sep; 93(35):12116-12121. PubMed ID: 34431658 [TBL] [Abstract][Full Text] [Related]
16. Differently substituted sulfonated polyanilines: the role of polymer compositions in electron transfer with pyrroloquinoline quinone-dependent glucose dehydrogenase. Sarauli D; Xu C; Dietzel B; Schulz B; Lisdat F Acta Biomater; 2013 Sep; 9(9):8290-8. PubMed ID: 23777884 [TBL] [Abstract][Full Text] [Related]
17. Direct electron transfer--a favorite electron route for cellobiose dehydrogenase (CDH) from Trametes villosa. Comparison with CDH from Phanerochaete chrysosporium. Stoica L; Ruzgas T; Ludwig R; Haltrich D; Gorton L Langmuir; 2006 Dec; 22(25):10801-6. PubMed ID: 17129063 [TBL] [Abstract][Full Text] [Related]
18. High current density PQQ-dependent alcohol and aldehyde dehydrogenase bioanodes. Aquino Neto S; Hickey DP; Milton RD; De Andrade AR; Minteer SD Biosens Bioelectron; 2015 Oct; 72():247-54. PubMed ID: 25988787 [TBL] [Abstract][Full Text] [Related]
19. A cytochrome b-glucose dehydrogenase chimeric enzyme capable of direct electron transfer. Viehauser MC; Breslmayr E; Scheiblbrandner S; Schachinger F; Ma S; Ludwig R Biosens Bioelectron; 2022 Jan; 196():113704. PubMed ID: 34695687 [TBL] [Abstract][Full Text] [Related]
20. Interdomain Linker of the Bioelecrocatalyst Cellobiose Dehydrogenase Governs the Electron Transfer. Zhang L; Laurent CVFP; Schwaiger L; Wang L; Ma S; Ludwig R ACS Catal; 2023 Jun; 13(12):8195-8205. PubMed ID: 37342832 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]