These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 31759742)
1. Microbial reactions and environmental factors affecting the dissolution and release of arsenic in the severely contaminated soils under anaerobic or aerobic conditions. Chen X; Zeng XC; Kawa YK; Wu W; Zhu X; Ullah Z; Wang Y Ecotoxicol Environ Saf; 2020 Feb; 189():109946. PubMed ID: 31759742 [TBL] [Abstract][Full Text] [Related]
2. Inhibitory effect of nitrate/nitrite on the microbial reductive dissolution of arsenic and iron from soils into pore water. Zhu X; Zeng XC; Chen X; Wu W; Wang Y Ecotoxicology; 2019 Jul; 28(5):528-538. PubMed ID: 31119594 [TBL] [Abstract][Full Text] [Related]
3. Dissimilatory arsenate-respiring prokaryotes catalyze the dissolution, reduction and release of arsenic from paddy soils into groundwater: implication for the effect of sulfate. Shi W; Wu W; Zeng XC; Chen X; Zhu X; Cheng S Ecotoxicology; 2018 Oct; 27(8):1126-1136. PubMed ID: 30099680 [TBL] [Abstract][Full Text] [Related]
4. Geochemical and microbial effects on the mobilization of arsenic in mine tailing soils. Lee KY; Kim KW; Kim SO Environ Geochem Health; 2010 Feb; 32(1):31-44. PubMed ID: 19412738 [TBL] [Abstract][Full Text] [Related]
5. Environmental Mn(II) enhances the activity of dissimilatory arsenate-respiring prokaryotes from arsenic-contaminated soils. Wu Y; Wu W; Xu Y; Zuo Y; Zeng XC J Environ Sci (China); 2023 Mar; 125():582-592. PubMed ID: 36375940 [TBL] [Abstract][Full Text] [Related]
6. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713 [TBL] [Abstract][Full Text] [Related]
7. Functions and Unique Diversity of Genes and Microorganisms Involved in Arsenite Oxidation from the Tailings of a Realgar Mine. Zeng XC; E G; Wang J; Wang N; Chen X; Mu Y; Li H; Yang Y; Liu Y; Wang Y Appl Environ Microbiol; 2016 Dec; 82(24):7019-7029. PubMed ID: 27663031 [TBL] [Abstract][Full Text] [Related]
8. Biological effect of phosphate on the dissimilatory arsenate-respiring bacteria-catalyzed reductive mobilization of arsenic from contaminated soils. Shi W; Xu Y; Wu W; Zeng XC Environ Pollut; 2022 Sep; 308():119698. PubMed ID: 35787423 [TBL] [Abstract][Full Text] [Related]
9. Comparisons of four As(V)-respiring bacteria from contaminated aquifers: activities to respire soluble As(V) and to reductively mobilize solid As(V). Zeng XC; Xu Y; Liu Z; Chen X; Wu Y Water Res; 2022 Oct; 224():119097. PubMed ID: 36148700 [TBL] [Abstract][Full Text] [Related]
10. Arsenic speciation and mobilization in CCA-contaminated soils: influence of organic matter content. Dobran S; Zagury GJ Sci Total Environ; 2006 Jul; 364(1-3):239-50. PubMed ID: 16055167 [TBL] [Abstract][Full Text] [Related]
11. Anaerobic arsenite oxidation by an autotrophic arsenite-oxidizing bacterium from an arsenic-contaminated paddy soil. Zhang J; Zhou W; Liu B; He J; Shen Q; Zhao FJ Environ Sci Technol; 2015 May; 49(10):5956-64. PubMed ID: 25905768 [TBL] [Abstract][Full Text] [Related]
12. Coupling speciation and isotope dilution techniques to study arsenic mobilization in the environment. Hamon RE; Lombi E; Fortunati P; Nolan AL; McLaughlin MJ Environ Sci Technol; 2004 Mar; 38(6):1794-8. PubMed ID: 15074691 [TBL] [Abstract][Full Text] [Related]
13. The influence of water-soluble As(III) and As(V) on dehydrogenase activity in soils affected by mine tailings. Fernández P; Sommer I; Cram S; Rosas I; Gutiérrez M Sci Total Environ; 2005 Sep; 348(1-3):231-43. PubMed ID: 16162327 [TBL] [Abstract][Full Text] [Related]
14. Unique diversity and functions of the arsenic-methylating microorganisms from the tailings of Shimen Realgar Mine. Ngegla JV; Zhou X; Chen X; Zhu X; Liu Z; Feng J; Zeng XC Ecotoxicology; 2020 Jan; 29(1):86-96. PubMed ID: 31832832 [TBL] [Abstract][Full Text] [Related]
15. Diversity and biogenesis contribution of sulfate-reducing bacteria in arsenic-contaminated soils from realgar deposits. Zhu X; Chen L; Pan H; Wang L; Zhang X; Wang D Environ Sci Pollut Res Int; 2022 May; 29(21):31110-31120. PubMed ID: 35001286 [TBL] [Abstract][Full Text] [Related]
16. Mobility and distribution of arsenic in contaminated mine soils and its effects on the microbial pool. Marabottini R; Stazi SR; Papp R; Grego S; Moscatelli MC Ecotoxicol Environ Saf; 2013 Oct; 96():147-53. PubMed ID: 23856118 [TBL] [Abstract][Full Text] [Related]
17. Accumulation and consumption of odorous compounds in feedlot soils under aerobic, fermentative, and anaerobic respiratory conditions. Miller DN J Anim Sci; 2001 Oct; 79(10):2503-12. PubMed ID: 11721828 [TBL] [Abstract][Full Text] [Related]
18. Contradictory Impacts of Nitrate on the Dissimilatory Arsenate-Respiring Prokaryotes-Induced Reductive Mobilization of Arsenic from Contaminated Sediments: Mechanism Insight from Metagenomic and Functional Analyses. Zeng XC; Xu Y; Lu H; Xiong J; Xu H; Wu W Environ Sci Technol; 2023 Sep; 57(36):13473-13486. PubMed ID: 37639510 [TBL] [Abstract][Full Text] [Related]
19. Enhanced dissolution of arsenic in anaerobic soils upon organic amendment application: acid detergent-soluble organic matter as a potential indicator. Suda A; Baba K; Sakurai G; Furuya M; Yamaguchi N Sci Rep; 2023 Jan; 13(1):217. PubMed ID: 36604487 [TBL] [Abstract][Full Text] [Related]
20. Microbial sulfate reduction decreases arsenic mobilization in flooded paddy soils with high potential for microbial Fe reduction. Xu X; Wang P; Zhang J; Chen C; Wang Z; Kopittke PM; Kretzschmar R; Zhao FJ Environ Pollut; 2019 Aug; 251():952-960. PubMed ID: 31234262 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]