These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31759758)

  • 1. Effect of Fe-metabolizing bacteria and humic substances on magnetite nanoparticle reactivity towards arsenic and chromium.
    Sundman A; Vitzthum AL; Adaktylos-Surber K; Figueroa AI; van der Laan G; Daus B; Kappler A; Byrne JM
    J Hazard Mater; 2020 Feb; 384():121450. PubMed ID: 31759758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influences of redox transformation, metal complexation and aggregation of fulvic acid and humic acid on Cr(VI) and As(V) removal by zero-valent iron.
    Mak MS; Lo IM
    Chemosphere; 2011 Jun; 84(2):234-40. PubMed ID: 21530997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic investigation of magnetite surface for the reduction of hexavalent chromium.
    Jung Y; Choi J; Lee W
    Chemosphere; 2007 Aug; 68(10):1968-75. PubMed ID: 17400277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox interactions between Cr(VI) and Fe(II) in bioreduced biotite and chlorite.
    Brookshaw DR; Coker VS; Lloyd JR; Vaughan DJ; Pattrick RA
    Environ Sci Technol; 2014 Oct; 48(19):11337-42. PubMed ID: 25196156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilizing magnetite onto quartz sand for chromium remediation.
    Sorwat J; Mellage A; Kappler A; Byrne JM
    J Hazard Mater; 2020 Dec; 400():123139. PubMed ID: 32563903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromium (VI) reduction in aqueous solutions by Fe3O4-stabilized Fe0 nanoparticles.
    Wu Y; Zhang J; Tong Y; Xu X
    J Hazard Mater; 2009 Dec; 172(2-3):1640-5. PubMed ID: 19740609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cr(VI) and azo dye removal using a hollow-fibre membrane system functionalized with a biogenic Pd-magnetite catalyst.
    Coker VS; Garrity A; Wennekes WB; Roesink HD; Cutting RS; Lloyd JR
    Environ Technol; 2014; 35(5-8):1046-54. PubMed ID: 24645489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influences of humic acid, bicarbonate and calcium on Cr(VI) reductive removal by zero-valent iron.
    Liu T; Rao P; Lo IM
    Sci Total Environ; 2009 May; 407(10):3407-14. PubMed ID: 19232679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between iron mineral-humic complexes and hexavalent chromium and the corresponding bio-effects.
    Zheng Z; Zheng Y; Tian X; Yang Z; Jiang Y; Zhao F
    Environ Pollut; 2018 Oct; 241():265-271. PubMed ID: 29807285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron(III) minerals and anthraquinone-2,6-disulfonate (AQDS) synergistically enhance bioreduction of hexavalent chromium by Shewanella oneidensis MR-1.
    Meng Y; Zhao Z; Burgos WD; Li Y; Zhang B; Wang Y; Liu W; Sun L; Lin L; Luan F
    Sci Total Environ; 2018 Nov; 640-641():591-598. PubMed ID: 29870936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial transformation of biogenic and abiogenic Fe minerals followed by in-situ incubations in an As-contaminated vs. non-contaminated aquifer.
    Glodowska M; Schneider M; Eiche E; Kontny A; Neumann T; Straub D; ; Kleindienst S; Kappler A
    Environ Pollut; 2021 Jul; 281():117012. PubMed ID: 33813189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing Cr(VI) and Tc(VII) remediation through nanoscale biomineral engineering.
    Cutting RS; Coker VS; Telling ND; Kimber RL; Pearce CI; Ellis BL; Lawson RS; van der Laan G; Pattrick RA; Vaughan DJ; Arenholz E; Lloyd JR
    Environ Sci Technol; 2010 Apr; 44(7):2577-84. PubMed ID: 20196588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Microbial Biomass and Humic Acids on Abiotic and Biotic Magnetite Formation.
    Han X; Tomaszewski EJ; Sorwat J; Pan Y; Kappler A; Byrne JM
    Environ Sci Technol; 2020 Apr; 54(7):4121-4130. PubMed ID: 32129607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction process of Cr(VI) by Fe(II) and humic acid analyzed using high time resolution XAFS analysis.
    Hori M; Shozugawa K; Matsuo M
    J Hazard Mater; 2015 Mar; 285():140-7. PubMed ID: 25497027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of natural Fe(II)-bearing minerals in chemoautotrophic chromium (VI) bio-reduction in groundwater.
    Lu J; Zhang B; He C; Borthwick AGL
    J Hazard Mater; 2020 May; 389():121911. PubMed ID: 31879105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron mineral-humic acid complex enhanced Cr(VI) reduction by Shewanella oneidensis MR-1.
    Mohamed A; Yu L; Fang Y; Ashry N; Riahi Y; Uddin I; Dai K; Huang Q
    Chemosphere; 2020 May; 247():125902. PubMed ID: 31978657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetite enhances As immobilization during nitrate reduction and Fe(II) oxidation by Acidovorax sp. strain BoFeN1.
    Liu Q; Dai H; Song Y; Li H
    Sci Total Environ; 2024 Oct; 946():173946. PubMed ID: 38909815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction and immobilization of hexavalent chromium with coal- and humate-based sorbents.
    Janos P; Hůla V; Bradnová P; Pilarová V; Sedlbauer J
    Chemosphere; 2009 May; 75(6):732-8. PubMed ID: 19215962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal.
    Chowdhury SR; Yanful EK
    J Environ Manage; 2010 Nov; 91(11):2238-47. PubMed ID: 20598797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ bioremediation of hexavalent chromium in presence of iron by dried sludge bacteria exposed to high chromium concentration.
    Bansal N; Coetzee JJ; Chirwa EMN
    Ecotoxicol Environ Saf; 2019 May; 172():281-289. PubMed ID: 30716662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.