These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 31760260)

  • 21. Impact of Pharmaceuticals on the Environment: Risk Assessment Using QSAR Modeling Approach.
    Kar S; Roy K; Leszczynski J
    Methods Mol Biol; 2018; 1800():395-443. PubMed ID: 29934904
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interspecies correlation estimates predict protective environmental concentrations.
    Dyer SD; Versteeg DJ; Belanger SE; Chaney JG; Mayer FL
    Environ Sci Technol; 2006 May; 40(9):3102-11. PubMed ID: 16719118
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Arguments for considering uncertainty in QSAR predictions in hazard and risk assessments.
    Sahlin U; Golsteijn L; Iqbal MS; Peijnenburg W
    Altern Lab Anim; 2013 Mar; 41(1):91-110. PubMed ID: 23614547
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of in silico development of aquatic toxicity species sensitivity distributions.
    Barron MG; Jackson CR; Awkerman JA
    Aquat Toxicol; 2012 Jul; 116-117():1-7. PubMed ID: 22459408
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hazard of pharmaceuticals for aquatic environment: Prioritization by structural approaches and prediction of ecotoxicity.
    Sangion A; Gramatica P
    Environ Int; 2016 Oct; 95():131-43. PubMed ID: 27568576
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction of ecological no-effect concentrations for initial risk assessment: combining substance-specific data and database information.
    Roelofs W; Huijbregts MA; Jager T; Ragas AM
    Environ Toxicol Chem; 2003 Jun; 22(6):1387-93. PubMed ID: 12785598
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Essential and desirable characteristics of ecotoxicity quantitative structure-activity relationships.
    Schultz TW; Cronin MT
    Environ Toxicol Chem; 2003 Mar; 22(3):599-607. PubMed ID: 12627648
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Derivation of freshwater quality criteria for zinc using interspecies correlation estimation models to protect aquatic life in China.
    Feng CL; Wu FC; Dyer SD; Chang H; Zhao XL
    Chemosphere; 2013 Jan; 90(3):1177-83. PubMed ID: 23058200
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Classification of baseline toxicants for QSAR predictions to replace fish acute toxicity studies.
    Nendza M; Müller M; Wenzel A
    Environ Sci Process Impacts; 2017 Mar; 19(3):429-437. PubMed ID: 28165522
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of a general baseline toxicity QSAR model for the fish embryo acute toxicity test.
    Klüver N; Vogs C; Altenburger R; Escher BI; Scholz S
    Chemosphere; 2016 Dec; 164():164-173. PubMed ID: 27588575
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Uncertainty in QSAR predictions.
    Sahlin U
    Altern Lab Anim; 2013 Mar; 41(1):111-25. PubMed ID: 23614548
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extrapolating ecotoxicological measures from small data sets.
    Pennington DW
    Ecotoxicol Environ Saf; 2003 Oct; 56(2):238-50. PubMed ID: 12927555
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Insecticide species sensitivity distributions: importance of test species selection and relevance to aquatic ecosystems.
    Maltby L; Blake N; Brock TC; van den Brink PJ
    Environ Toxicol Chem; 2005 Feb; 24(2):379-88. PubMed ID: 15719998
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Framework for Optimizing Selection of Interspecies Correlation Estimation Models to Address Species Diversity and Toxicity Gaps in an Aquatic Database.
    Bejarano AC; Raimondo S; Barron MG
    Environ Sci Technol; 2017 Jul; 51(14):8158-8165. PubMed ID: 28636817
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Method development for aquatic ecotoxicological characterization factor calculation for hydrocarbon mixtures in life cycle assessment.
    Bamard E; Bulle C; Deschênes L
    Environ Toxicol Chem; 2011 Oct; 30(10):2342-52. PubMed ID: 21805496
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deriving the predicted no effect concentrations of 35 pesticides by the QSAR-SSD method.
    Huang P; Liu SS; Wang ZJ; Ding TT; Xu YQ
    Chemosphere; 2022 Jul; 298():134303. PubMed ID: 35288184
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Methods for deriving pesticide aquatic life criteria.
    TenBrook PL; Tjeerdema RS; Hann P; Karkoski J
    Rev Environ Contam Toxicol; 2009; 199():19-109. PubMed ID: 19110939
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multispecies QSAR modeling for predicting the aquatic toxicity of diverse organic chemicals for regulatory toxicology.
    Singh KP; Gupta S; Kumar A; Mohan D
    Chem Res Toxicol; 2014 May; 27(5):741-53. PubMed ID: 24738471
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Derivation of freshwater water quality criteria for dibutyltin dilaurate from measured data and data predicted using interspecies correlation estimate models.
    Zhang S; Wang L; Wang Z; Fan D; Shi L; Liu J
    Chemosphere; 2017 Mar; 171():142-148. PubMed ID: 28013075
    [TBL] [Abstract][Full Text] [Related]  

  • 40. European Chemicals Agency dossier submissions as an experimental data source: refinement of a fish toxicity model for predicting acute LC50 values.
    Austin T; Denoyelle M; Chaudry A; Stradling S; Eadsforth C
    Environ Toxicol Chem; 2015 Feb; 34(2):369-78. PubMed ID: 25470737
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.