These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 31760263)

  • 1. Modeling the characteristics of spontaneous otoacoustic emissions in lizards.
    Wit HP; Manley GA; van Dijk P
    Hear Res; 2020 Jan; 385():107840. PubMed ID: 31760263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous otoacoustic emissions in lizards: a comparison of the skink-like lizard families Cordylidae and Gerrhosauridae.
    Manley GA
    Hear Res; 2009 Sep; 255(1-2):58-66. PubMed ID: 19539017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous otoacoustic emissions from free-standing stereovillar bundles of ten species of lizard with small papillae.
    Manley GA
    Hear Res; 2006 Feb; 212(1-2):33-47. PubMed ID: 16307854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model for the relation between stimulus frequency and spontaneous otoacoustic emissions in lizard papillae.
    Wit HP; van Dijk P; Manley GA
    J Acoust Soc Am; 2012 Nov; 132(5):3273-9. PubMed ID: 23145611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous otoacoustic emissions in teiid lizards.
    Manley GA; Wartini A; Schwabedissen G; Siegl E
    Hear Res; 2018 Jun; 363():98-108. PubMed ID: 29551307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous otoacoustic emissions in monitor lizards.
    Manley GA
    Hear Res; 2004 Mar; 189(1-2):41-57. PubMed ID: 14987751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coherent reflection without traveling waves: on the origin of long-latency otoacoustic emissions in lizards.
    Bergevin C; Shera CA
    J Acoust Soc Am; 2010 Apr; 127(4):2398-409. PubMed ID: 20370023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency Shifts in a Local Oscillator Model for the Generation of Spontaneous Otoacoustic Emissions by the Lizard Ear.
    Wit HP; Bell A
    Audiol Neurootol; 2023; 28(3):183-193. PubMed ID: 36626887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of air pressure on spontaneous otoacoustic emissions of lizards.
    van Dijk P; Manley GA
    J Assoc Res Otolaryngol; 2013 Jun; 14(3):309-19. PubMed ID: 23568746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous otoacoustic emissions in the bobtail lizard. I: General characteristics.
    Köppl C; Manley GA
    Hear Res; 1993 Dec; 71(1-2):157-69. PubMed ID: 8113134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency clustering in spontaneous otoacoustic emissions from a lizard's ear.
    Vilfan A; Duke T
    Biophys J; 2008 Nov; 95(10):4622-30. PubMed ID: 18689448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salient features of otoacoustic emissions are common across tetrapod groups and suggest shared properties of generation mechanisms.
    Bergevin C; Manley GA; Köppl C
    Proc Natl Acad Sci U S A; 2015 Mar; 112(11):3362-7. PubMed ID: 25737537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous otoacoustic emissions in the bobtail lizard. III: Temperature effects.
    Manley GA; Köppl C
    Hear Res; 1994 Jan; 72(1-2):171-80. PubMed ID: 8150733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. What have lizard ears taught us about auditory physiology?
    Manley GA; Köppl C
    Hear Res; 2008 Apr; 238(1-2):3-11. PubMed ID: 17983712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Otoacoustic emissions, hair cells, and myosin motors.
    Manley GA; Gallo L
    J Acoust Soc Am; 1997 Aug; 102(2 Pt 1):1049-55. PubMed ID: 9265753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of otoacoustic emissions within gecko subfamilies: morphological implications for auditory function in lizards.
    Bergevin C
    J Assoc Res Otolaryngol; 2011 Apr; 12(2):203-17. PubMed ID: 21136278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium modulates the frequency and amplitude of spontaneous otoacoustic emissions in the bobtail skink.
    Manley GA; Sienknecht U; Köppl C
    J Neurophysiol; 2004 Nov; 92(5):2685-93. PubMed ID: 15102898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of injected AC and DC currents on spontaneous otoacoustic emissions in the bobtail lizard.
    Manley GA; Kirk DL
    J Assoc Res Otolaryngol; 2002 Jun; 3(2):200-8. PubMed ID: 12162369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions between hair cells shape spontaneous otoacoustic emissions in a model of the tokay gecko's cochlea.
    Gelfand M; Piro O; Magnasco MO; Hudspeth AJ
    PLoS One; 2010 Jun; 5(6):e11116. PubMed ID: 20559557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tectorial membrane morphological variation: effects upon stimulus frequency otoacoustic emissions.
    Bergevin C; Velenovsky DS; Bonine KE
    Biophys J; 2010 Aug; 99(4):1064-72. PubMed ID: 20712989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.