These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 31760288)

  • 21. Lab-scale study on the application of In-Adit-Sulfate-Reducing System for AMD control.
    Ji SW; Kim SJ
    J Hazard Mater; 2008 Dec; 160(2-3):441-7. PubMed ID: 18455296
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficiencies of available organic mixtures for the biological treatment of highly acidic-sulphate rich drainage of the San Jose mine, Bolivia.
    Oporto C; Baya G; Vandecasteele C
    Environ Technol; 2021 Mar; 42(8):1283-1291. PubMed ID: 31496432
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biogeochemistry of the compost bioreactor components of a composite acid mine drainage passive remediation system.
    Johnson DB; Hallberg KB
    Sci Total Environ; 2005 Feb; 338(1-2):81-93. PubMed ID: 15680629
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphorus removal performance of acid mine drainage from wastewater.
    Ruihua L; Lin Z; Tao T; Bo L
    J Hazard Mater; 2011 Jun; 190(1-3):669-76. PubMed ID: 21514994
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Removal of Acidity and Metals from Acid Mine Drainage-Impacted Water using Industrial Byproducts.
    RoyChowdhury A; Sarkar D; Datta R
    Environ Manage; 2019 Jan; 63(1):148-158. PubMed ID: 30276442
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A preliminary study to design a floating treatment wetland for remediating acid mine drainage-impacted water using vetiver grass (Chrysopogon zizanioides).
    Kiiskila JD; Sarkar D; Feuerstein KA; Datta R
    Environ Sci Pollut Res Int; 2017 Dec; 24(36):27985-27993. PubMed ID: 28990146
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Manganese removal processes and geochemical behavior in residues from passive treatment of mine drainage.
    Le Bourre B; Neculita CM; Coudert L; Rosa E
    Chemosphere; 2020 Nov; 259():127424. PubMed ID: 32599383
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of the efficiency of chitinous and ligneous substrates in metal and sulfate removal from mining-influenced water.
    Pinto PX; Al-Abed SR; McKernan J
    J Environ Manage; 2018 Dec; 227():321-328. PubMed ID: 30199728
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficiency of thermally activated eggshells for acid mine drainage treatment in cold climate.
    Calugaru IL; Etteieb S; Magdouli S; Kaur Brar K
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2022; 57(2):81-91. PubMed ID: 35049418
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simultaneous chemical oxygen demand removal, methane production and heavy metal precipitation in the biological treatment of landfill leachate using acid mine drainage as sulfate resource.
    Li YL; Wang J; Yue ZB; Tao W; Yang HB; Zhou YF; Chen TH
    J Biosci Bioeng; 2017 Jul; 124(1):71-75. PubMed ID: 28279646
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Removal of heavy metals from acid mine drainage (AMD) using coal fly ash, natural clinker and synthetic zeolites.
    Ríos CA; Williams CD; Roberts CL
    J Hazard Mater; 2008 Aug; 156(1-3):23-35. PubMed ID: 18221835
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Semi-passive in-situ pilot scale bioreactor successfully removed sulfate and metals from mine impacted water under subarctic climatic conditions.
    Nielsen G; Hatam I; Abuan KA; Janin A; Coudert L; Blais JF; Mercier G; Baldwin SA
    Water Res; 2018 Sep; 140():268-279. PubMed ID: 29723816
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimal start-up conditions for the efficient treatment of acid mine drainage using sulfate-reducing bioreactors based on physicochemical and microbiome analyses.
    Sato Y; Hamai T; Hori T; Aoyagi T; Inaba T; Hayashi K; Kobayashi M; Sakata T; Habe H
    J Hazard Mater; 2022 Feb; 423(Pt B):127089. PubMed ID: 34560478
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of hydraulic retention time on microbial community in biochemical passive reactors during treatment of acid mine drainage.
    Vasquez Y; Escobar MC; Saenz JS; Quiceno-Vallejo MF; Neculita CM; Arbeli Z; Roldan F
    Bioresour Technol; 2018 Jan; 247():624-632. PubMed ID: 28988048
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioremediation of mine water.
    Klein R; Tischler JS; Mühling M; Schlömann M
    Adv Biochem Eng Biotechnol; 2014; 141():109-72. PubMed ID: 24357145
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sequential hydrotalcite precipitation, microbial sulfate reduction and in situ hydrogen sulfide removal for neutral mine drainage treatment.
    Cheng KY; Acuña CR; Kaksonen AH; Esslemont G; Douglas GB
    Sci Total Environ; 2024 May; 926():171537. PubMed ID: 38460684
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biological treatment removal of rare earth elements and yttrium (REY) and metals from actual acid mine drainage.
    Nogueira EW; Licona FM; Godoi LAG; Brucha G; Damianovic MHRZ
    Water Sci Technol; 2019 Oct; 80(8):1485-1493. PubMed ID: 31961811
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel approach for the management of acid mine drainage (AMD) for the recovery of heavy metals along with lipid production by Chlorella vulgaris.
    Brar KK; Etteieb S; Magdouli S; Calugaru L; Brar SK
    J Environ Manage; 2022 Apr; 308():114507. PubMed ID: 35124315
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Desulfosporosinus spp. were the most predominant sulfate-reducing bacteria in pilot- and laboratory-scale passive bioreactors for acid mine drainage treatment.
    Sato Y; Hamai T; Hori T; Aoyagi T; Inaba T; Kobayashi M; Habe H; Sakata T
    Appl Microbiol Biotechnol; 2019 Sep; 103(18):7783-7793. PubMed ID: 31388728
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Passive treatment test of acid mine drainage from an abandoned coal mine in Kaili Guizhou, China.
    Wenbo L; Qiyan F; Haoqian L; Di C; Xiangdong L
    Water Sci Technol; 2021 Oct; 84(8):1981-1996. PubMed ID: 34695025
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.