These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 31760444)

  • 1. Biomass of the Cyanobacterium Lyngbya wollei Alters Copper Algaecide Exposure and Risks to a Non-target Organism.
    Bishop WM; Willis BE; Cope WG; Richardson RJ
    Bull Environ Contam Toxicol; 2020 Feb; 104(2):228-234. PubMed ID: 31760444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper-Based Aquatic Algaecide Adsorption and Accumulation Kinetics: Influence of Exposure Concentration and Duration for Controlling the Cyanobacterium Lyngbya wollei.
    Bishop WM; Lynch CL; Willis BE; Cope WG
    Bull Environ Contam Toxicol; 2017 Sep; 99(3):365-371. PubMed ID: 28681162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Responses of Lyngbya wollei to algaecide exposures and a risk characterization associated with their use.
    Calomeni AJ; Iwinski KJ; Kinley CM; McQueen A; Rodgers JH
    Ecotoxicol Environ Saf; 2015 Jun; 116():90-8. PubMed ID: 25770656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The presence of algae mitigates the toxicity of copper-based algaecides to a nontarget organism.
    Bishop WM; Willis BE; Richardson RJ; Cope WG
    Environ Toxicol Chem; 2018 Aug; 37(8):2132-2142. PubMed ID: 29736933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Affinity and efficacy of copper following an algicide exposure: application of the critical burden concept for Lyngbya wollei control in Lay Lake, AL.
    Bishop WM; Willis BE; Horton CT
    Environ Manage; 2015 Apr; 55(4):983-90. PubMed ID: 25549997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Responses of Lyngbya wollei to exposures of copper-based algaecides: the critical burden concept.
    Bishop WM; Rodgers JH
    Arch Environ Contam Toxicol; 2012 Apr; 62(3):403-10. PubMed ID: 21968539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New is not always better: Toxicity of novel copper based algaecides to Daphnia magna.
    Kang L; Mucci M; Fang J; Lürling M
    Ecotoxicol Environ Saf; 2022 Aug; 241():113817. PubMed ID: 36068746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laboratory-scale evaluation of algaecide effectiveness for control of microcystin-producing cyanobacteria from Lake Okeechobee, Florida (USA).
    Kinley-Baird C; Calomeni A; Berthold DE; Lefler FW; Barbosa M; Rodgers JH; Laughinghouse HD
    Ecotoxicol Environ Saf; 2021 Jan; 207():111233. PubMed ID: 32916528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of CuSO
    Iwinski KJ; Rodgers JH; Kinley CM; Hendrikse M; Calomeni AJ; McQueen AD; Geer TD; Liang J; Friesen V; Haakensen M
    Chemosphere; 2017 May; 174():538-544. PubMed ID: 28193586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell density dependence of Microcystis aeruginosa responses to copper algaecide concentrations: Implications for microcystin-LR release.
    Kinley CM; Iwinski KJ; Hendrikse M; Geer TD; Rodgers JH
    Ecotoxicol Environ Saf; 2017 Nov; 145():591-596. PubMed ID: 28802140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Are interactive effects of harmful algal blooms and copper pollution a concern for water quality management?
    Hochmuth JD; Asselman J; De Schamphelaere KAC
    Water Res; 2014 Sep; 60():41-53. PubMed ID: 24821194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uptake and toxicity of CuO nanoparticles to Daphnia magna varies between indirect dietary and direct waterborne exposures.
    Wu F; Bortvedt A; Harper BJ; Crandon LE; Harper SL
    Aquat Toxicol; 2017 Sep; 190():78-86. PubMed ID: 28697458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicity and bioavailability of copper herbicides (Clearigate, Cutrine-Plus, and copper sulfate) to freshwater animals.
    Mastin BJ; Rodgers JH
    Arch Environ Contam Toxicol; 2000 Nov; 39(4):445-51. PubMed ID: 11031304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Responses of Lyngbya magnifica Gardner to an algaecide exposure in the laboratory and field.
    Bishop WM; Rodgers JH
    Ecotoxicol Environ Saf; 2011 Oct; 74(7):1832-8. PubMed ID: 21704373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper regulation and homeostasis of Daphnia magna and Pseudokirchneriella subcapitata: influence of acclimation.
    Bossuyt BT; Janssen CR
    Environ Pollut; 2005 Jul; 136(1):135-44. PubMed ID: 15809115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative toxicity of sodium carbonate peroxyhydrate to freshwater organisms.
    Geer TD; Kinley CM; Iwinski KJ; Calomeni AJ; Rodgers JH
    Ecotoxicol Environ Saf; 2016 Oct; 132():202-11. PubMed ID: 27322608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth and metal removal potential of a Phormidium bigranulatum-dominated mat following long-term exposure to elevated levels of copper.
    Kumar D; Gaur JP
    Environ Sci Pollut Res Int; 2014 Sep; 21(17):10279-85. PubMed ID: 24793067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship among aqueous copper half-lives and responses of Pimephales promelas to a series of copper sulfate pentahydrate concentrations.
    Calomeni AJ; Kinley CM; Geer TD; Iwinski KJ; Hendrikse M; Rodgers JH
    Ecotoxicology; 2018 Apr; 27(3):278-285. PubMed ID: 29353354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age and exposure duration as a factor influencing Cu and Zn toxicity toward Daphnia magna.
    Muyssen BT; Janssen CR
    Ecotoxicol Environ Saf; 2007 Nov; 68(3):436-42. PubMed ID: 17258805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxicity and accumulation of Cu and ZnO nanoparticles in Daphnia magna.
    Xiao Y; Vijver MG; Chen G; Peijnenburg WJ
    Environ Sci Technol; 2015 Apr; 49(7):4657-64. PubMed ID: 25785366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.