BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 31760532)

  • 1. Volumetric segmentation of glioblastoma progression compared to bidimensional products and clinical radiological reports.
    Berntsen EM; Stensjøen AL; Langlo MS; Simonsen SQ; Christensen P; Moholdt VA; Solheim O
    Acta Neurochir (Wien); 2020 Feb; 162(2):379-387. PubMed ID: 31760532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inter-rater agreement in glioma segmentations on longitudinal MRI.
    Visser M; Müller DMJ; van Duijn RJM; Smits M; Verburg N; Hendriks EJ; Nabuurs RJA; Bot JCJ; Eijgelaar RS; Witte M; van Herk MB; Barkhof F; de Witt Hamer PC; de Munck JC
    Neuroimage Clin; 2019; 22():101727. PubMed ID: 30825711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel, reproducible, and objective method for volumetric magnetic resonance imaging assessment of enhancing glioblastoma.
    Kanaly CW; Mehta AI; Ding D; Hoang JK; Kranz PG; Herndon JE; Coan A; Crocker I; Waller AF; Friedman AH; Reardon DA; Sampson JH
    J Neurosurg; 2014 Sep; 121(3):536-42. PubMed ID: 25036205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning automates bidimensional and volumetric tumor burden measurement from MRI in pre- and post-operative glioblastoma patients.
    Nalepa J; Kotowski K; Machura B; Adamski S; Bozek O; Eksner B; Kokoszka B; Pekala T; Radom M; Strzelczak M; Zarudzki L; Krason A; Arcadu F; Tessier J
    Comput Biol Med; 2023 Mar; 154():106603. PubMed ID: 36738710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-modal glioblastoma segmentation: man versus machine.
    Porz N; Bauer S; Pica A; Schucht P; Beck J; Verma RK; Slotboom J; Reyes M; Wiest R
    PLoS One; 2014; 9(5):e96873. PubMed ID: 24804720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of lung cancer response after nonoperative therapy: tumor diameter, bidimensional product, and volume. A serial CT scan-based study.
    Werner-Wasik M; Xiao Y; Pequignot E; Curran WJ; Hauck W
    Int J Radiat Oncol Biol Phys; 2001 Sep; 51(1):56-61. PubMed ID: 11516851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of reproducibility in MRI quantitative volumetric assessment and its role in the prediction of overall survival and progression-free survival in glioblastoma.
    Blomstergren A; Rydelius A; Abul-Kasim K; Lätt J; Sundgren PC; Bengzon J
    Acta Radiol; 2019 Apr; 60(4):516-525. PubMed ID: 29966430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reliability of Semi-Automated Segmentations in Glioblastoma.
    Huber T; Alber G; Bette S; Boeckh-Behrens T; Gempt J; Ringel F; Alberts E; Zimmer C; Bauer JS
    Clin Neuroradiol; 2017 Jun; 27(2):153-161. PubMed ID: 26490369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fully Automated Enhanced Tumor Compartmentalization: Man vs. Machine Reloaded.
    Porz N; Habegger S; Meier R; Verma R; Jilch A; Fichtner J; Knecht U; Radina C; Schucht P; Beck J; Raabe A; Slotboom J; Reyes M; Wiest R
    PLoS One; 2016; 11(11):e0165302. PubMed ID: 27806121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Volumetric glioma quantification: comparison of manual and semi-automatic tumor segmentation for the quantification of tumor growth.
    Odland A; Server A; Saxhaug C; Breivik B; Groote R; Vardal J; Larsson C; Bjørnerud A
    Acta Radiol; 2015 Nov; 56(11):1396-403. PubMed ID: 25338837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response Assessment in Neuro-Oncology criteria, contrast enhancement and perfusion MRI for assessing progression in glioblastoma.
    Tensaouti F; Khalifa J; Lusque A; Plas B; Lotterie JA; Berry I; Laprie A; Cohen-Jonathan Moyal E; Lubrano V
    Neuroradiology; 2017 Oct; 59(10):1013-1020. PubMed ID: 28842741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interobserver variability in the radiological assessment of magnetic resonance imaging (MRI) including perfusion MRI in glioblastoma multiforme.
    Kerkhof M; Hagenbeek RE; van der Kallen BF; Lycklama À Nijeholt GJ; Dirven L; Taphoorn MJ; Vos MJ
    Eur J Neurol; 2016 Oct; 23(10):1528-33. PubMed ID: 27424939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Peritumoral Brain Parenchyma Using Contrast-Enhanced 3D Fast Imaging Employing Steady-State Acquisition at 3T for Differentiating Metastatic Brain Tumors and Glioblastomas.
    Yamamoto J; Kakeda S; Shimajiri S; Nakano Y; Saito T; Ide S; Moriya J; Korogi Y; Nishizawa S
    World Neurosurg; 2018 Dec; 120():e719-e729. PubMed ID: 30165229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiology reporting of low-grade glioma growth underestimates tumor expansion.
    Gui C; Lau JC; Kosteniuk SE; Lee DH; Megyesi JF
    Acta Neurochir (Wien); 2019 Mar; 161(3):569-576. PubMed ID: 30756242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contrast-enhancing tumor growth dynamics of preoperative, treatment-naive human glioblastoma.
    Ellingson BM; Nguyen HN; Lai A; Nechifor RE; Zaw O; Pope WB; Yong WH; Nghiemphu PL; Liau LM; Cloughesy TF
    Cancer; 2016 Jun; 122(11):1718-27. PubMed ID: 26998740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glioblastoma Segmentation: Comparison of Three Different Software Packages.
    Fyllingen EH; Stensjøen AL; Berntsen EM; Solheim O; Reinertsen I
    PLoS One; 2016; 11(10):e0164891. PubMed ID: 27780224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early-Stage Glioblastomas: MR Imaging-Based Classification and Imaging Evidence of Progressive Growth.
    Toh CH; Castillo M
    AJNR Am J Neuroradiol; 2017 Feb; 38(2):288-293. PubMed ID: 27856439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilizing 18F-fluoroethyltyrosine (FET) positron emission tomography (PET) to define suspected nonenhancing tumor for radiation therapy planning of glioblastoma.
    Hayes AR; Jayamanne D; Hsiao E; Schembri GP; Bailey DL; Roach PJ; Khasraw M; Newey A; Wheeler HR; Back M
    Pract Radiat Oncol; 2018; 8(4):230-238. PubMed ID: 29730279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Volumetric assessment of glioblastoma and its predictive value for survival.
    Henker C; Hiepel MC; Kriesen T; Scherer M; Glass Ä; Herold-Mende C; Bendszus M; Langner S; Weber MA; Schneider B; Unterberg A; Piek J
    Acta Neurochir (Wien); 2019 Aug; 161(8):1723-1732. PubMed ID: 31254065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiological features combined with IDH1 status for predicting the survival outcome of glioblastoma patients.
    Wang K; Wang Y; Fan X; Wang J; Li G; Ma J; Ma J; Jiang T; Dai J
    Neuro Oncol; 2016 Apr; 18(4):589-97. PubMed ID: 26409566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.