These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 31760896)
1. Applying an iterative method numerically to solve Priddin MJ; Kisil AV; Ayton LJ Philos Trans A Math Phys Eng Sci; 2020 Jan; 378(2162):20190241. PubMed ID: 31760896 [TBL] [Abstract][Full Text] [Related]
2. Numerical factorization of a matrix-function with exponential factors in an anti-plane problem for a crack with process zone. Livasov P; Mishuris G Philos Trans A Math Phys Eng Sci; 2019 Oct; 377(2156):20190109. PubMed ID: 31474200 [TBL] [Abstract][Full Text] [Related]
3. The generalized Wiener-Hopf equations for wave motion in angular regions: electromagnetic application. Daniele VG; Lombardi G Proc Math Phys Eng Sci; 2021 Aug; 477(2252):20210040. PubMed ID: 35153569 [TBL] [Abstract][Full Text] [Related]
4. Numerical solution of scattering problems using a Riemann-Hilbert formulation. Llewellyn Smith SG; Luca E Proc Math Phys Eng Sci; 2019 Sep; 475(2229):20190105. PubMed ID: 31611712 [TBL] [Abstract][Full Text] [Related]
5. Discrete scattering by a pair of parallel defects. Sharma BL; Maurya G Philos Trans A Math Phys Eng Sci; 2020 Jan; 378(2162):20190102. PubMed ID: 31760901 [TBL] [Abstract][Full Text] [Related]
6. The generalized Wiener-Hopf equations for the elastic wave motion in angular regions. Daniele VG; Lombardi G Proc Math Phys Eng Sci; 2022 Jan; 478(2257):20210624. PubMed ID: 35153614 [TBL] [Abstract][Full Text] [Related]
7. The Wiener-Hopf technique, its generalizations and applications: constructive and approximate methods. Kisil AV; Abrahams ID; Mishuris G; Rogosin SV Proc Math Phys Eng Sci; 2021 Oct; 477(2254):20210533. PubMed ID: 35153588 [TBL] [Abstract][Full Text] [Related]
8. On explicit Wiener-Hopf factorization of 2 × 2 matrices in a vicinity of a given matrix. Ephremidze L; Spitkovsky I Proc Math Phys Eng Sci; 2020 Jun; 476(2238):20200027. PubMed ID: 32831589 [TBL] [Abstract][Full Text] [Related]
9. The unified transform for mixed boundary condition problems in unbounded domains. Colbrook MJ; Ayton LJ; Fokas AS Proc Math Phys Eng Sci; 2019 Feb; 475(2222):20180605. PubMed ID: 30853842 [TBL] [Abstract][Full Text] [Related]
10. On the Wiener-Hopf solution of water-wave interaction with a submerged elastic or poroelastic plate. Smith MJA; Peter MA; Abrahams ID; Meylan MH Proc Math Phys Eng Sci; 2020 Oct; 476(2242):20200360. PubMed ID: 33223937 [TBL] [Abstract][Full Text] [Related]
11. Annular and circular rigid inclusions planted into a penny-shaped crack and factorization of triangular matrices. Antipov YA; Mkhitaryan SM Proc Math Phys Eng Sci; 2020 Jun; 476(2238):20200240. PubMed ID: 32831598 [TBL] [Abstract][Full Text] [Related]
12. Deep neural networks for waves assisted by the Wiener-Hopf method. Huang X Proc Math Phys Eng Sci; 2020 Mar; 476(2235):20190846. PubMed ID: 32269493 [TBL] [Abstract][Full Text] [Related]
14. Diffraction by a rigid strip in a plate modelled by Mindlin theory. Thompson I Proc Math Phys Eng Sci; 2020 Nov; 476(2243):20200648. PubMed ID: 33362425 [TBL] [Abstract][Full Text] [Related]
15. Kramers problem: numerical Wiener-Hopf-like model characteristics. Ezin AN; Samgin AL Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056703. PubMed ID: 21230615 [TBL] [Abstract][Full Text] [Related]
16. Plane wave diffraction by a finite plate with impedance boundary conditions. Nawaz R; Ayub M; Javaid A PLoS One; 2014; 9(4):e92566. PubMed ID: 24755624 [TBL] [Abstract][Full Text] [Related]
17. Scattering on a square lattice from a crack with a damage zone. Lal Sharma B; Mishuris G Proc Math Phys Eng Sci; 2020 Mar; 476(2235):20190686. PubMed ID: 32269488 [TBL] [Abstract][Full Text] [Related]
18. An explicit Wiener-Hopf factorization algorithm for matrix polynomials and its exact realizations within ExactMPF package. Adukov VM; Adukova NV; Mishuris G Proc Math Phys Eng Sci; 2022 Jul; 478(2263):20210941. PubMed ID: 35811639 [TBL] [Abstract][Full Text] [Related]
19. Acoustic diffraction by a half-plane in a viscous fluid medium. Davis AM; Nagem RJ J Acoust Soc Am; 2002 Oct; 112(4):1288-96. PubMed ID: 12398435 [TBL] [Abstract][Full Text] [Related]
20. Network representations of angular regions for electromagnetic scattering. Daniele VG; Lombardi G; Zich RS PLoS One; 2017; 12(8):e0182763. PubMed ID: 28817573 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]