BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 31760947)

  • 1. Prioritizing candidate diseases-related metabolites based on literature and functional similarity.
    Wang Y; Juan L; Peng J; Zang T; Wang Y
    BMC Bioinformatics; 2019 Nov; 20(Suppl 18):574. PubMed ID: 31760947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LncDisAP: a computation model for LncRNA-disease association prediction based on multiple biological datasets.
    Wang Y; Juan L; Peng J; Zang T; Wang Y
    BMC Bioinformatics; 2019 Dec; 20(Suppl 16):582. PubMed ID: 31787106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying diseases-related metabolites using random walk.
    Hu Y; Zhao T; Zhang N; Zang T; Zhang J; Cheng L
    BMC Bioinformatics; 2018 Apr; 19(Suppl 5):116. PubMed ID: 29671398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Explore potential disease related metabolites based on latent factor model.
    Wang Y; Juan L; Peng J; Wang T; Zang T; Wang Y
    BMC Genomics; 2022 Apr; 23(Suppl 1):269. PubMed ID: 35387615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of disease-related metabolites using bi-random walks.
    Lei X; Tie J
    PLoS One; 2019; 14(11):e0225380. PubMed ID: 31730648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prioritizing candidate disease-related long non-coding RNAs by walking on the heterogeneous lncRNA and disease network.
    Zhou M; Wang X; Li J; Hao D; Wang Z; Shi H; Han L; Zhou H; Sun J
    Mol Biosyst; 2015 Mar; 11(3):760-9. PubMed ID: 25502053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fusing literature and full network data improves disease similarity computation.
    Li P; Nie Y; Yu J
    BMC Bioinformatics; 2016 Aug; 17(1):326. PubMed ID: 27578323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MetSigDis: a manually curated resource for the metabolic signatures of diseases.
    Cheng L; Yang H; Zhao H; Pei X; Shi H; Sun J; Zhang Y; Wang Z; Zhou M
    Brief Bioinform; 2019 Jan; 20(1):203-209. PubMed ID: 28968812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene gravity-like algorithm for disease gene prediction based on phenotype-specific network.
    Lin L; Yang T; Fang L; Yang J; Yang F; Zhao J
    BMC Syst Biol; 2017 Dec; 11(1):121. PubMed ID: 29212543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression.
    Zhang SW; Shao DD; Zhang SY; Wang YB
    Mol Biosyst; 2014 Jun; 10(6):1400-8. PubMed ID: 24695957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SemFunSim: a new method for measuring disease similarity by integrating semantic and gene functional association.
    Cheng L; Li J; Ju P; Peng J; Wang Y
    PLoS One; 2014; 9(6):e99415. PubMed ID: 24932637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global Prioritization of Disease Candidate Metabolites Based on a Multi-omics Composite Network.
    Yao Q; Xu Y; Yang H; Shang D; Zhang C; Zhang Y; Sun Z; Shi X; Feng L; Han J; Su F; Li C; Li X
    Sci Rep; 2015 Nov; 5():17201. PubMed ID: 26598063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated pathway and reaction prediction facilitates in silico identification of unknown metabolites in human cohort studies.
    Quell JD; Römisch-Margl W; Colombo M; Krumsiek J; Evans AM; Mohney R; Salomaa V; de Faire U; Groop LC; Agakov F; Looker HC; McKeigue P; Colhoun HM; Kastenmüller G
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Dec; 1071():58-67. PubMed ID: 28479069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MCHMDA:Predicting Microbe-Disease Associations Based on Similarities and Low-Rank Matrix Completion.
    Yan C; Duan G; Wu FX; Pan Y; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):611-620. PubMed ID: 31295117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NTSMDA: prediction of miRNA-disease associations by integrating network topological similarity.
    Sun D; Li A; Feng H; Wang M
    Mol Biosyst; 2016 Jun; 12(7):2224-32. PubMed ID: 27153230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network-based prediction and knowledge mining of disease genes.
    Carson MB; Lu H
    BMC Med Genomics; 2015; 8 Suppl 2(Suppl 2):S9. PubMed ID: 26043920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying Cancer genes by combining two-rounds RWR based on multiple biological data.
    Zhang W; Lei Ieee Member X; Bian C
    BMC Bioinformatics; 2019 Nov; 20(Suppl 18):518. PubMed ID: 31760937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolomic network analysis of estrogen-stimulated MCF-7 cells: a comparison of overrepresentation analysis, quantitative enrichment analysis and pathway analysis versus metabolite network analysis.
    Maertens A; Bouhifd M; Zhao L; Odwin-DaCosta S; Kleensang A; Yager JD; Hartung T
    Arch Toxicol; 2017 Jan; 91(1):217-230. PubMed ID: 27039105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model.
    Ni J; Koyuturk M; Tong H; Haines J; Xu R; Zhang X
    BMC Bioinformatics; 2016 Nov; 17(1):453. PubMed ID: 27829360
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.