These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 3176107)

  • 21. Predicting serum lithium concentration using Bayesian method: a comparison with other methods.
    Higuchi S; Fukuoka R; Aoyama T; Horioka M
    J Pharmacobiodyn; 1988 Mar; 11(3):158-74. PubMed ID: 3411433
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Individual theophylline dosing based on bioelectrical impedance analysis.
    Sidhu JS; Triggs EJ; Charles BG; Smithurst BA
    Br J Clin Pharmacol; 1993 Jun; 35(6):657-60. PubMed ID: 8329295
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comparison of absorption rate models in the prediction of steady-state plasma concentrations during oral theophylline administration.
    Paterson CM; Hudson SA; Jefferson GC
    J Clin Pharm Ther; 1987 Feb; 12(1):39-46. PubMed ID: 3449562
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A single oral dose method for predicting steady state theophylline concentrations in clinical practice.
    Mann JS; Fitzpatrick RW; Jones PW; Prowse K; Mucklow JC; Cole RB
    Respir Med; 1990 Nov; 84(6):479-84. PubMed ID: 2274687
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experience with a computer-based technique for estimating pharmacokinetic constants from limited data.
    Bachmann K; Pongsin V; Forney R; Gronau G
    Ther Drug Monit; 1985; 7(3):258-64. PubMed ID: 4049460
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reliability of theophylline clearance in determining chronic oral dosage regimens.
    Slotfeldt ML; Johnson CE; Grambau G; Weg JG
    Am J Hosp Pharm; 1979 Jan; 36(1):66-8. PubMed ID: 758787
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predictive performance of the Bayesian analysis: effects of blood sampling time, population parameters, and pharmacostatistical model.
    Tanigawara Y; Yano I; Kawakatsu K; Nishimura K; Yasuhara M; Hori R
    J Pharmacokinet Biopharm; 1994 Feb; 22(1):59-71. PubMed ID: 8027949
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Performance of Bayesian feedback to forecast lidocaine serum concentration: evaluation of the prediction error and the prediction interval.
    Vozeh S; Uematsu T; Hauf GF; Follath F
    J Pharmacokinet Biopharm; 1985 Apr; 13(2):203-12. PubMed ID: 4057058
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dose-dependent kinetics of theophylline disposition in asthmatic children.
    Weinberger M; Ginchansky E
    J Pediatr; 1977 Nov; 91(5):820-4. PubMed ID: 909026
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Clinical utility of the single point method for theophylline maintenance dose prediction.
    Abad J; Pastor A; Prieto L; Palop J; Jiménez Torres V; Castro J
    Allergol Immunopathol (Madr); 1987; 15(6):355-9. PubMed ID: 3445876
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of three different doses of a slow-release theophylline formulation on bronchial response to inhaled methacholine in asthmatic patients.
    Ferrari M; Olivieri M; Lampronti G; Biasin C; Lo Cascio V
    Respiration; 1995; 62(2):95-100. PubMed ID: 7784717
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of once daily and twice daily sustained release theophylline formulations on daytime variation of bronchial hyperresponsiveness in asthmatic patients.
    Ferrari M; Olivieri M; Lampronti G; Bonazza L; Biasin C; Nacci P; Talamini G; Lo Cascio V
    Thorax; 1997 Nov; 52(11):969-74. PubMed ID: 9487345
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative steady-state bioavailability of Theo-24 and Theo-Dur in healthy men.
    Dockhorn RJ; Cefali EA; Straughn AB
    Ann Allergy; 1994 Mar; 72(3):218-22. PubMed ID: 8129214
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nonlinear regression program to individualize oral theophylline dosage.
    Bauer LA; Black DJ; Koup JR
    Clin Pharm; 1984; 3(3):288-90. PubMed ID: 6547379
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Estimation of theophylline clearance during intravenous aminophylline infusions.
    Gilman TM; Muir KT; Jung RC; Walberg CB
    J Pharm Sci; 1985 May; 74(5):508-14. PubMed ID: 4020626
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ability of three pharmacokinetic equations to predict steady-state serum theophylline concentrations in pediatric patients.
    Reiter PD; Hogue SL; Phelps SJ
    Ther Drug Monit; 1992 Oct; 14(5):354-9. PubMed ID: 1448840
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of a two-compartment Bayesian forecasting program for predicting vancomycin concentrations.
    Rodvold KA; Pryka RD; Garrison M; Rotschafer JC
    Ther Drug Monit; 1989; 11(3):269-75. PubMed ID: 2728085
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Daily maintenance dose of a long-acting theophylline from a single theophylline serum level.
    Goldstein RS; Allen LC; Thiessen JJ; Michalko K; Dayneka N; Woolf CR
    Chest; 1986 Jan; 89(1):103-8. PubMed ID: 3940768
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clinical evaluation of population pharmacokinetic parameters in phenytoin dosage adjustment.
    Yukawa E; Higuchi S; Aoyama T
    Chem Pharm Bull (Tokyo); 1989 Dec; 37(12):3363-6. PubMed ID: 2632085
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computer prediction of serum theophylline concentrations in ambulatory patients.
    Deci PA; Lopez LM; Robinson JD; Grauer K
    Ther Drug Monit; 1985; 7(4):421-5. PubMed ID: 3841237
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.