These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
356 related articles for article (PubMed ID: 31761156)
21. Ectopic bone regeneration by human bone marrow mononucleated cells, undifferentiated and osteogenically differentiated bone marrow mesenchymal stem cells in beta-tricalcium phosphate scaffolds. Ye X; Yin X; Yang D; Tan J; Liu G Tissue Eng Part C Methods; 2012 Jul; 18(7):545-56. PubMed ID: 22250840 [TBL] [Abstract][Full Text] [Related]
22. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration. Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708 [TBL] [Abstract][Full Text] [Related]
23. [Osteogenic capability of primary human adipose-derived stromal cells in vivo]. Liu YS; Zhou YS; Ge WS; Ma GE; Zhang X; Xu YW Beijing Da Xue Xue Bao Yi Xue Ban; 2012 Feb; 44(1):55-8. PubMed ID: 22353901 [TBL] [Abstract][Full Text] [Related]
24. Dual release of growth factor from nanocomposite fibrous scaffold promotes vascularisation and bone regeneration in rat critical sized calvarial defect. Kuttappan S; Mathew D; Jo JI; Tanaka R; Menon D; Ishimoto T; Nakano T; Nair SV; Nair MB; Tabata Y Acta Biomater; 2018 Sep; 78():36-47. PubMed ID: 30067947 [TBL] [Abstract][Full Text] [Related]
25. Human adipose-derived stromal cells stimulate autogenous skeletal repair via paracrine Hedgehog signaling with calvarial osteoblasts. Levi B; James AW; Nelson ER; Li S; Peng M; Commons GW; Lee M; Wu B; Longaker MT Stem Cells Dev; 2011 Feb; 20(2):243-57. PubMed ID: 20698749 [TBL] [Abstract][Full Text] [Related]
26. Towards an intraoperative engineering of osteogenic and vasculogenic grafts from the stromal vascular fraction of human adipose tissue. Müller AM; Mehrkens A; Schäfer DJ; Jaquiery C; Güven S; Lehmicke M; Martinetti R; Farhadi I; Jakob M; Scherberich A; Martin I Eur Cell Mater; 2010 Mar; 19():127-35. PubMed ID: 20198567 [TBL] [Abstract][Full Text] [Related]
27. Human Adipose Stem Cells Differentiated on Braided Polylactide Scaffolds Is a Potential Approach for Tendon Tissue Engineering. Vuornos K; Björninen M; Talvitie E; Paakinaho K; Kellomäki M; Huhtala H; Miettinen S; Seppänen-Kaijansinkko R; Haimi S Tissue Eng Part A; 2016 Mar; 22(5-6):513-23. PubMed ID: 26919401 [TBL] [Abstract][Full Text] [Related]
28. Investigation of angiogenesis in bioactive 3-dimensional poly(d,l-lactide-co-glycolide)/nano-hydroxyapatite scaffolds by in vivo multiphoton microscopy in murine calvarial critical bone defect. Li J; Xu Q; Teng B; Yu C; Li J; Song L; Lai YX; Zhang J; Zheng W; Ren PG Acta Biomater; 2016 Sep; 42():389-399. PubMed ID: 27326916 [TBL] [Abstract][Full Text] [Related]
29. Fractionated human adipose tissue as a native biomaterial for the generation of a bone organ by endochondral ossification. Guerrero J; Pigeot S; Müller J; Schaefer DJ; Martin I; Scherberich A Acta Biomater; 2018 Sep; 77():142-154. PubMed ID: 30126590 [TBL] [Abstract][Full Text] [Related]
30. Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) improved osteogenic differentiation of the human induced pluripotent stem cells while considered as an artificial extracellular matrix. Hosseini FS; Soleimanifar F; Aidun A; Enderami SE; Saburi E; Marzouni HZ; Khani MM; Khojasteh A; Ardeshirylajimi A J Cell Physiol; 2019 Jul; 234(7):11537-11544. PubMed ID: 30478907 [TBL] [Abstract][Full Text] [Related]
31. Comparison of bone regenerative capacity of donor-matched human adipose-derived and bone marrow mesenchymal stem cells. Mohamed-Ahmed S; Yassin MA; Rashad A; Espedal H; Idris SB; Finne-Wistrand A; Mustafa K; Vindenes H; Fristad I Cell Tissue Res; 2021 Mar; 383(3):1061-1075. PubMed ID: 33242173 [TBL] [Abstract][Full Text] [Related]
32. Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications. Seyednejad H; Gawlitta D; Dhert WJ; van Nostrum CF; Vermonden T; Hennink WE Acta Biomater; 2011 May; 7(5):1999-2006. PubMed ID: 21241834 [TBL] [Abstract][Full Text] [Related]
33. Delivery of VEGFA in bone marrow stromal cells seeded in copolymer scaffold enhances angiogenesis, but is inadequate for osteogenesis as compared with the dual delivery of VEGFA and BMP2 in a subcutaneous mouse model. Sharma S; Sapkota D; Xue Y; Rajthala S; Yassin MA; Finne-Wistrand A; Mustafa K Stem Cell Res Ther; 2018 Jan; 9(1):23. PubMed ID: 29386057 [TBL] [Abstract][Full Text] [Related]
34. Piezoelectric 3-D Fibrous Poly(3-hydroxybutyrate)-Based Scaffolds Ultrasound-Mineralized with Calcium Carbonate for Bone Tissue Engineering: Inorganic Phase Formation, Osteoblast Cell Adhesion, and Proliferation. Chernozem RV; Surmeneva MA; Shkarina SN; Loza K; Epple M; Ulbricht M; Cecilia A; Krause B; Baumbach T; Abalymov AA; Parakhonskiy BV; Skirtach AG; Surmenev RA ACS Appl Mater Interfaces; 2019 May; 11(21):19522-19533. PubMed ID: 31058486 [TBL] [Abstract][Full Text] [Related]
35. Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds. Mauney JR; Nguyen T; Gillen K; Kirker-Head C; Gimble JM; Kaplan DL Biomaterials; 2007 Dec; 28(35):5280-90. PubMed ID: 17765303 [TBL] [Abstract][Full Text] [Related]
36. In vitro characterization of polyesters of aconitic acid, glycerol, and cinnamic acid for bone tissue engineering. Kanitkar A; Chen C; Smoak M; Hogan K; Scherr T; Aita G; Hayes D J Biomater Appl; 2015 Mar; 29(8):1075-85. PubMed ID: 25281649 [TBL] [Abstract][Full Text] [Related]
37. Osteogenic differentiation of human mesenchymal stem cells in 3-D Zr-Si organic-inorganic scaffolds produced by two-photon polymerization technique. Koroleva A; Deiwick A; Nguyen A; Schlie-Wolter S; Narayan R; Timashev P; Popov V; Bagratashvili V; Chichkov B PLoS One; 2015; 10(2):e0118164. PubMed ID: 25706270 [TBL] [Abstract][Full Text] [Related]
38. PHBV wet-spun scaffold coated with ELR-REDV improves vascularization for bone tissue engineering. Alagoz AS; Rodriguez-Cabello JC; Hasirci V Biomed Mater; 2018 Jul; 13(5):055010. PubMed ID: 29974870 [TBL] [Abstract][Full Text] [Related]
39. Repair of bone defects in rat radii with a composite of allogeneic adipose-derived stem cells and heterogeneous deproteinized bone. Liu J; Zhou P; Long Y; Huang C; Chen D Stem Cell Res Ther; 2018 Mar; 9(1):79. PubMed ID: 29587852 [TBL] [Abstract][Full Text] [Related]
40. Osteoinductive Effects of Free and Immobilized Bone Forming Peptide-1 on Human Adipose-Derived Stem Cells. Li W; Zheng Y; Zhao X; Ge Y; Chen T; Liu Y; Zhou Y PLoS One; 2016; 11(3):e0150294. PubMed ID: 26930062 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]