BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 31761158)

  • 1. PCL/sulfonated keratin mats for vascular tissue engineering scaffold with potential of catalytic nitric oxide generation.
    Dou J; Wang Y; Jin X; Li P; Wang L; Yuan J; Shen J
    Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110246. PubMed ID: 31761158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heparinized PCL/keratin mats for vascular tissue engineering scaffold with potential of catalytic nitric oxide generation.
    Wan X; Wang Y; Jin X; Li P; Yuan J; Shen J
    J Biomater Sci Polym Ed; 2018 Oct; 29(14):1785-1798. PubMed ID: 30035672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic Generation of Nitric Oxide from Poly(ε-caprolactone)/Phosphobetainized Keratin Mats for a Vascular Tissue Engineering Scaffold.
    Li P; Wang Y; Jin X; Dou J; Han X; Wan X; Yuan J; Shen J
    Langmuir; 2020 Apr; 36(16):4396-4404. PubMed ID: 32255641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospun PCL/keratin/AuNPs mats with the catalytic generation of nitric oxide for potential of vascular tissue engineering.
    Wan X; Liu P; Jin X; Xin X; Li P; Yuan J; Shen J
    J Biomed Mater Res A; 2018 Dec; 106(12):3239-3247. PubMed ID: 30289598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of PCL/keratin composite scaffolds for vascular tissue engineering with catalytic generation of nitric oxide potential.
    Li P; Wang Y; Jin X; Dou J; Han X; Wan X; Yuan J; Shen J
    J Mater Chem B; 2020 Jul; 8(28):6092-6099. PubMed ID: 32555924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of poly(ε-caprolactone)/keratin nanofibrous mats as a potential scaffold for vascular tissue engineering.
    Li Y; Wang Y; Ye J; Yuan J; Xiao Y
    Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():177-183. PubMed ID: 27524010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(ε-caprolactone)/keratin/heparin/VEGF biocomposite mats for vascular tissue engineering.
    Wan X; Li P; Jin X; Su F; Shen J; Yuan J
    J Biomed Mater Res A; 2020 Feb; 108(2):292-300. PubMed ID: 31606923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric oxide-releasing poly(ε-caprolactone)/S-nitrosylated keratin biocomposite scaffolds for potential small-diameter vascular grafts.
    Li P; Jin D; Dou J; Wang L; Wang Y; Jin X; Han X; Kang IK; Yuan J; Shen J; Yin M
    Int J Biol Macromol; 2021 Oct; 189():516-527. PubMed ID: 34450147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile fabrication of copper-incorporating poly(ε-caprolactone)/keratin mats for tissue-engineered vascular grafts with the potential of catalytic nitric oxide generation.
    Miao C; Du J; Dou J; Wang C; Wang L; Yuan J; Shen J; Yin M
    J Mater Chem B; 2022 Aug; 10(32):6158-6170. PubMed ID: 35904091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(ε-caprolactone)/keratin-based composite nanofibers for biomedical applications.
    Edwards A; Jarvis D; Hopkins T; Pixley S; Bhattarai N
    J Biomed Mater Res B Appl Biomater; 2015 Jan; 103(1):21-30. PubMed ID: 24757060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of nanofibrous scaffolds containing gum tragacanth/poly (ε-caprolactone) for application as skin scaffolds.
    Ranjbar-Mohammadi M; Bahrami SH
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():71-9. PubMed ID: 25579898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospun chitosan-graft-poly (ε -caprolactone)/poly (ε-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering.
    Chen H; Huang J; Yu J; Liu S; Gu P
    Int J Biol Macromol; 2011 Jan; 48(1):13-9. PubMed ID: 20933540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calendula officinalis extract/PCL/Zein/Gum arabic nanofibrous bio-composite scaffolds via suspension, two-nozzle and multilayer electrospinning for skin tissue engineering.
    Pedram Rad Z; Mokhtari J; Abbasi M
    Int J Biol Macromol; 2019 Aug; 135():530-543. PubMed ID: 31152839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gradient nanofibrous chitosan/poly ɛ-caprolactone scaffolds as extracellular microenvironments for vascular tissue engineering.
    Du F; Wang H; Zhao W; Li D; Kong D; Yang J; Zhang Y
    Biomaterials; 2012 Jan; 33(3):762-70. PubMed ID: 22056285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and characterization of PVA/Gum tragacanth/PCL hybrid nanofibrous scaffolds for skin substitutes.
    Zarekhalili Z; Bahrami SH; Ranjbar-Mohammadi M; Milan PB
    Int J Biol Macromol; 2017 Jan; 94(Pt A):679-690. PubMed ID: 27777080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skin regeneration stimulation: the role of PCL-platelet gel nanofibrous scaffold.
    Ranjbarvan P; Soleimani M; Samadi Kuchaksaraei A; Ai J; Faridi Majidi R; Verdi J
    Microsc Res Tech; 2017 May; 80(5):495-503. PubMed ID: 28124460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shish-kebab-structured poly(ε-caprolactone) nanofibers hierarchically decorated with chitosan-poly(ε-caprolactone) copolymers for bone tissue engineering.
    Jing X; Mi HY; Wang XC; Peng XF; Turng LS
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6955-65. PubMed ID: 25761418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced adhesion and proliferation of human umbilical vein endothelial cells on conductive PANI-PCL fiber scaffold by electrical stimulation.
    Li Y; Li X; Zhao R; Wang C; Qiu F; Sun B; Ji H; Qiu J; Wang C
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():106-112. PubMed ID: 28024565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short fluorocarbon chains containing hydrophobic nanofibrous membranes with improved hemocompatibility, anticoagulation and anti-fouling performance.
    Wang Y; Liu Y; Liu M; Qian W; Zhou D; Liu T; Luo G; Xing M
    Colloids Surf B Biointerfaces; 2019 Aug; 180():49-57. PubMed ID: 31028964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A vascular tissue engineering scaffold with core-shell structured nano-fibers formed by coaxial electrospinning and its biocompatibility evaluation.
    Duan N; Geng X; Ye L; Zhang A; Feng Z; Guo L; Gu Y
    Biomed Mater; 2016 May; 11(3):035007. PubMed ID: 27206161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.