These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 31761244)

  • 1. Dissolution, bioactivity and osteogenic properties of composites based on polymer and silicate or borosilicate bioactive glass.
    Houaoui A; Lyyra I; Agniel R; Pauthe E; Massera J; Boissière M
    Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110340. PubMed ID: 31761244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New Generation of Hybrid Materials Based on Gelatin and Bioactive Glass Particles for Bone Tissue Regeneration.
    Houaoui A; Szczodra A; Lallukka M; El-Guermah L; Agniel R; Pauthe E; Massera J; Boissiere M
    Biomolecules; 2021 Mar; 11(3):. PubMed ID: 33802745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation.
    Fu Q; Rahaman MN; Fu H; Liu X
    J Biomed Mater Res A; 2010 Oct; 95(1):164-71. PubMed ID: 20544804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro and in vivo bioactivity assessment of a polylactic acid/hydroxyapatite composite for bone regeneration.
    Danoux CB; Barbieri D; Yuan H; de Bruijn JD; van Blitterswijk CA; Habibovic P
    Biomatter; 2014; 4():e27664. PubMed ID: 24441389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of bioactive glass-reinforced HAP-polymer composites.
    Greish YE; Brown PW
    J Biomed Mater Res; 2000 Dec; 52(4):687-94. PubMed ID: 11033551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro bioactivity and degradation of polycaprolactone composites containing silicate fillers.
    Chouzouri G; Xanthos M
    Acta Biomater; 2007 Sep; 3(5):745-56. PubMed ID: 17392042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. II. In vitro and in vivo biological evaluation.
    Fu Q; Rahaman MN; Bal BS; Bonewald LF; Kuroki K; Brown RF
    J Biomed Mater Res A; 2010 Oct; 95(1):172-9. PubMed ID: 20540099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Independent effects of the chemical and microstructural surface properties of polymer/ceramic composites on proliferation and osteogenic differentiation of human MSCs.
    Sun L; Danoux CB; Wang Q; Pereira D; Barata D; Zhang J; LaPointe V; Truckenmüller R; Bao C; Xu X; Habibovic P
    Acta Biomater; 2016 Sep; 42():364-377. PubMed ID: 27318269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study on biological properties of novel nanostructured monticellite-based composites with hydroxyapatite bioceramic.
    Kalantari E; Naghib SM
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():1087-1096. PubMed ID: 30812992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reinforcement of poly-l-lactic acid electrospun membranes with strontium borosilicate bioactive glasses for bone tissue engineering.
    Fernandes JS; Gentile P; Martins M; Neves NM; Miller C; Crawford A; Pires RA; Hatton P; Reis RL
    Acta Biomater; 2016 Oct; 44():168-77. PubMed ID: 27554018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of S53P4-based borosilicate glasses and glass dissolution products on the osteogenic commitment of human adipose stem cells.
    Ojansivu M; Mishra A; Vanhatupa S; Juntunen M; Larionova A; Massera J; Miettinen S
    PLoS One; 2018; 13(8):e0202740. PubMed ID: 30153295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel poly(hydroxyalkanoates)-based composites containing Bioglass® and calcium sulfate for bone tissue engineering.
    García-García JM; Garrido L; Quijada-Garrido I; Kaschta J; Schubert DW; Boccaccini AR
    Biomed Mater; 2012 Oct; 7(5):054105. PubMed ID: 22972204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.
    Dziadek M; Menaszek E; Zagrajczuk B; Pawlik J; Cholewa-Kowalska K
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():9-21. PubMed ID: 26249560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response of mouse bone marrow mesenchymal stem cells to graphene-containing grid-like bioactive glass scaffolds produced by robocasting.
    Deliormanlı AM; Türk M; Atmaca H
    J Biomater Appl; 2018 Oct; 33(4):488-500. PubMed ID: 30249149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gel-derived bioglass as a compound of hydroxyapatite composites.
    Cholewa-Kowalska K; Kokoszka J; Laczka M; Niedźwiedzki L; Madej W; Osyczka AM
    Biomed Mater; 2009 Oct; 4(5):055007. PubMed ID: 19779249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, cytotoxicity, and hydroxyapatite formation in 27-Tris-SBF for sol-gel based CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses.
    Kaur G; Pickrell G; Kimsawatde G; Homa D; Allbee HA; Sriranganathan N
    Sci Rep; 2014 Mar; 4():4392. PubMed ID: 24637634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and Stability of High CaO- and P
    Prasad S; Gaddam A; Jana A; Kant S; Sinha PK; Tripathy S; Annapurna K; Ferreira JMF; Allu AR; Biswas K
    J Phys Chem B; 2019 Sep; 123(35):7558-7569. PubMed ID: 31403295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of nanoparticulate bioactive glass particles on bioactivity and cytocompatibility of poly(3-hydroxybutyrate) composites.
    Misra SK; Ansari T; Mohn D; Valappil SP; Brunner TJ; Stark WJ; Roy I; Knowles JC; Sibbons PD; Jones EV; Boccaccini AR; Salih V
    J R Soc Interface; 2010 Mar; 7(44):453-65. PubMed ID: 19640877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth and osteogenic differentiation of adipose stem cells on PLA/bioactive glass and PLA/beta-TCP scaffolds.
    Haimi S; Suuriniemi N; Haaparanta AM; Ellä V; Lindroos B; Huhtala H; Räty S; Kuokkanen H; Sándor GK; Kellomäki M; Miettinen S; Suuronen R
    Tissue Eng Part A; 2009 Jul; 15(7):1473-80. PubMed ID: 19072198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of phosphate-based glass fibre surface properties on thermally produced poly(lactic acid) matrix composites.
    Mohammadi MS; Ahmed I; Muja N; Rudd CD; Bureau MN; Nazhat SN
    J Mater Sci Mater Med; 2011 Dec; 22(12):2659-72. PubMed ID: 22002512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.