These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 31761485)
1. Fabricating mechanically improved silk-based vascular grafts by solution control of the gel-spinning process. Rodriguez M; Kluge JA; Smoot D; Kluge MA; Schmidt DF; Paetsch CR; Kim PS; Kaplan DL Biomaterials; 2020 Feb; 230():119567. PubMed ID: 31761485 [TBL] [Abstract][Full Text] [Related]
2. Tubular silk scaffolds for small diameter vascular grafts. Lovett M; Eng G; Kluge JA; Cannizzaro C; Vunjak-Novakovic G; Kaplan DL Organogenesis; 2010; 6(4):217-24. PubMed ID: 21220960 [TBL] [Abstract][Full Text] [Related]
3. The Regulatory Effect of Braided Silk Fiber Skeletons with Differential Porosities on In Vivo Vascular Tissue Regeneration and Long-Term Patency. Ding X; Zhang W; Xu P; Feng W; Tang X; Yang X; Wang L; Li L; Huang Y; Ji J; Chen D; Liu H; Fan Y Research (Wash D C); 2022; 2022():9825237. PubMed ID: 36474603 [TBL] [Abstract][Full Text] [Related]
4. Development of a decellularized human amniotic membrane-based electrospun vascular graft capable of rapid remodeling for small-diameter vascular applications. Liu J; Chen D; Zhu X; Liu N; Zhang H; Tang R; Liu Z Acta Biomater; 2022 Oct; 152():144-156. PubMed ID: 36108966 [TBL] [Abstract][Full Text] [Related]
5. Bilayered vascular grafts based on silk proteins. Liu S; Dong C; Lu G; Lu Q; Li Z; Kaplan DL; Zhu H Acta Biomater; 2013 Nov; 9(11):8991-9003. PubMed ID: 23851155 [TBL] [Abstract][Full Text] [Related]
6. Long-term patency of small-diameter vascular graft made from fibroin, a silk-based biodegradable material. Enomoto S; Sumi M; Kajimoto K; Nakazawa Y; Takahashi R; Takabayashi C; Asakura T; Sata M J Vasc Surg; 2010 Jan; 51(1):155-64. PubMed ID: 19954921 [TBL] [Abstract][Full Text] [Related]
8. Bioengineered vascular graft grown in the mouse peritoneal cavity. Song L; Wang L; Shah PK; Chaux A; Sharifi BG J Vasc Surg; 2010 Oct; 52(4):994-1002, 1002.e1-2. PubMed ID: 20692791 [TBL] [Abstract][Full Text] [Related]
9. Altered processing enhances the efficacy of small-diameter silk fibroin vascular grafts. Chan AHP; Filipe EC; Tan RP; Santos M; Yang N; Hung J; Feng J; Nazir S; Benn AJ; Ng MKC; Rnjak-Kovacina J; Wise SG Sci Rep; 2019 Nov; 9(1):17461. PubMed ID: 31767928 [TBL] [Abstract][Full Text] [Related]
10. Biological reaction to small-diameter vascular grafts made of silk fibroin implanted in the abdominal aortae of rats. Fukayama T; Takagi K; Tanaka R; Hatakeyama Y; Aytemiz D; Suzuki Y; Asakura T Ann Vasc Surg; 2015 Feb; 29(2):341-52. PubMed ID: 25449988 [TBL] [Abstract][Full Text] [Related]
11. Preparation of double-raschel knitted silk vascular grafts and evaluation of short-term function in a rat abdominal aorta. Yagi T; Sato M; Nakazawa Y; Tanaka K; Sata M; Itoh K; Takagi Y; Asakura T J Artif Organs; 2011 Jun; 14(2):89-99. PubMed ID: 21344164 [TBL] [Abstract][Full Text] [Related]
12. Hybrid electrospun rapamycin-loaded small-diameter decellularized vascular grafts effectively inhibit intimal hyperplasia. Yang Y; Lei D; Zou H; Huang S; Yang Q; Li S; Qing FL; Ye X; You Z; Zhao Q Acta Biomater; 2019 Oct; 97():321-332. PubMed ID: 31523025 [TBL] [Abstract][Full Text] [Related]
13. Effect of fibroin sponge coating on in vivo performance of knitted silk small diameter vascular grafts. Fukayama T; Ozai Y; Shimokawadoko H; Aytemiz D; Tanaka R; Machida N; Asakura T Organogenesis; 2015; 11(3):137-51. PubMed ID: 26496652 [TBL] [Abstract][Full Text] [Related]
14. Gel spinning of silk tubes for tissue engineering. Lovett ML; Cannizzaro CM; Vunjak-Novakovic G; Kaplan DL Biomaterials; 2008 Dec; 29(35):4650-7. PubMed ID: 18801570 [TBL] [Abstract][Full Text] [Related]
15. Development of Small-Diameter Vascular Grafts Based on Silk Fibroin Fibers from Bombyx mori for Vascular Regeneration. Nakazawa Y; Sato M; Takahashi R; Aytemiz D; Takabayashi C; Tamura T; Enomoto S; Sata M; Asakura T J Biomater Sci Polym Ed; 2011; 22(1-3):195-206. PubMed ID: 20557695 [TBL] [Abstract][Full Text] [Related]
16. End-point immobilization of heparin on plasma-treated surface of electrospun polycarbonate-urethane vascular graft. Qiu X; Lee BL; Ning X; Murthy N; Dong N; Li S Acta Biomater; 2017 Mar; 51():138-147. PubMed ID: 28069505 [TBL] [Abstract][Full Text] [Related]
17. Patency and in vivo compatibility of bacterial nanocellulose grafts as small-diameter vascular substitute. Weber C; Reinhardt S; Eghbalzadeh K; Wacker M; Guschlbauer M; Maul A; Sterner-Kock A; Wahlers T; Wippermann J; Scherner M J Vasc Surg; 2018 Dec; 68(6S):177S-187S.e1. PubMed ID: 29248244 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of endothelialization in the center part of graft using 3 cm vascular grafts implanted in the abdominal aortae of the rat. Fukayama T; Ozai Y; Shimokawatoko H; Kimura Y; Aytemiz D; Tanaka R; Machida N; Asakura T J Artif Organs; 2017 Sep; 20(3):221-229. PubMed ID: 28500497 [TBL] [Abstract][Full Text] [Related]
19. Biodegradable Porous Silk Microtubes for Tissue Vascularization. Bosio VE; Brown J; Rodriguez MJ; Kaplan DL J Mater Chem B; 2017; 5(6):1227-1235. PubMed ID: 28944059 [TBL] [Abstract][Full Text] [Related]