BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 31761563)

  • 1. Fructose-1,6-Bisphosphatase 2 Inhibits Sarcoma Progression by Restraining Mitochondrial Biogenesis.
    Huangyang P; Li F; Lee P; Nissim I; Weljie AM; Mancuso A; Li B; Keith B; Yoon SS; Simon MC
    Cell Metab; 2020 Jan; 31(1):174-188.e7. PubMed ID: 31761563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fructose-1,6-Bisphosphatase 2 Inhibits Oral Squamous Cell Carcinoma Tumorigenesis and Glucose Metabolism via Downregulation of c-Myc.
    Wang L; Wang J; Shen Y; Zheng Z; Sun J
    Oxid Med Cell Longev; 2022; 2022():6766787. PubMed ID: 35571245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decreased fructose-1,6-bisphosphatase-2 expression promotes glycolysis and growth in gastric cancer cells.
    Li H; Wang J; Xu H; Xing R; Pan Y; Li W; Cui J; Zhang H; Lu Y
    Mol Cancer; 2013 Sep; 12(1):110. PubMed ID: 24063558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fructose-1,6-bisphosphatase 2 represses cervical cancer progression via inhibiting aerobic glycolysis through promoting pyruvate kinase isozyme type M2 ubiquitination.
    Wang B; Yuan Y; Zou Y; Qi Z; Huang G; Liu Y; Xia S; Huang Y; Huang Z
    Anticancer Drugs; 2022 Jan; 33(1):e198-e206. PubMed ID: 34387592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fructose-1,6-bisphosphatase opposes renal carcinoma progression.
    Li B; Qiu B; Lee DS; Walton ZE; Ochocki JD; Mathew LK; Mancuso A; Gade TP; Keith B; Nissim I; Simon MC
    Nature; 2014 Sep; 513(7517):251-5. PubMed ID: 25043030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fructose bisphosphatase 2 overexpression increases glucose uptake in skeletal muscle.
    Bakshi I; Suryana E; Small L; Quek LE; Brandon AE; Turner N; Cooney GJ
    J Endocrinol; 2018 May; 237(2):101-111. PubMed ID: 29507044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FBP1-Altered Carbohydrate Metabolism Reduces Leukemic Viability through Activating P53 and Modulating the Mitochondrial Quality Control System In Vitro.
    Xu Y; Tran L; Tang J; Nguyen V; Sewell E; Xiao J; Hino C; Wasnik S; Francis-Boyle OL; Zhang KK; Xie L; Zhong JF; Baylink DJ; Chen CS; Reeves ME; Cao H
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in quaternary structure of muscle fructose-1,6-bisphosphatase regulate affinity of the enzyme to mitochondria.
    Pirog M; Gizak A; Rakus D
    Int J Biochem Cell Biol; 2014 Mar; 48():55-9. PubMed ID: 24412565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial biogenesis and the development of diabetic retinopathy.
    Santos JM; Tewari S; Goldberg AF; Kowluru RA
    Free Radic Biol Med; 2011 Nov; 51(10):1849-60. PubMed ID: 21911054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2)-dependent Tup1 conversion (PIPTC) regulates metabolic reprogramming from glycolysis to gluconeogenesis.
    Han BK; Emr SD
    J Biol Chem; 2013 Jul; 288(28):20633-45. PubMed ID: 23733183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of a gluconeogenic muscle enzyme contributed to adaptive metabolic traits in hummingbirds.
    Osipova E; Barsacchi R; Brown T; Sadanandan K; Gaede AH; Monte A; Jarrells J; Moebius C; Pippel M; Altshuler DL; Winkler S; Bickle M; Baldwin MW; Hiller M
    Science; 2023 Jan; 379(6628):185-190. PubMed ID: 36634192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic Reprogramming in Response to Alterations of Mitochondrial DNA and Mitochondrial Dysfunction in Gastric Adenocarcinoma.
    Chang TC; Lee HT; Pan SC; Cho SH; Cheng C; Ou LH; Lin CI; Lin CS; Wei YH
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MKP-1 Modulates Mitochondrial Transcription Factors, Oxidative Phosphorylation, and Glycolysis.
    Bauerfeld C; Talwar H; Zhang K; Liu Y; Samavati L
    Immunohorizons; 2020 May; 4(5):245-258. PubMed ID: 32414764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HIF-1 regulates insect lifespan extension by inhibiting c-Myc-TFAM signaling and mitochondrial biogenesis.
    Lin XW; Tang L; Yang J; Xu WH
    Biochim Biophys Acta; 2016 Nov; 1863(11):2594-2603. PubMed ID: 27469241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA methyltransferase 3a-induced hypermethylation of the fructose-1,6-bisphosphatase-2 promoter contributes to gastric carcinogenesis.
    Huang Y; Lu H; Li H
    Mol Biol Rep; 2024 Jan; 51(1):78. PubMed ID: 38183507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The essential role of fructose-1,6-bisphosphatase 2 enzyme in thermal homeostasis upon cold stress.
    Park HJ; Jang HR; Park SY; Kim YB; Lee HY; Choi CS
    Exp Mol Med; 2020 Mar; 52(3):485-496. PubMed ID: 32203098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nutrient deprivation-related OXPHOS/glycolysis interconversion via HIF-1α/C-MYC pathway in U251 cells.
    Liu Z; Sun Y; Tan S; Liu L; Hu S; Huo H; Li M; Cui Q; Yu M
    Tumour Biol; 2016 May; 37(5):6661-71. PubMed ID: 26646563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis.
    Li F; Wang Y; Zeller KI; Potter JJ; Wonsey DR; O'Donnell KA; Kim JW; Yustein JT; Lee LA; Dang CV
    Mol Cell Biol; 2005 Jul; 25(14):6225-34. PubMed ID: 15988031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Reverse Warburg Effect is Associated with Fbp2-Dependent Hif1α Regulation in Cancer Cells Stimulated by Fibroblasts.
    Duda P; Janczara J; McCubrey JA; Gizak A; Rakus D
    Cells; 2020 Jan; 9(1):. PubMed ID: 31947613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fructose-1,6-bisphosphatase is a novel regulator of Wnt/β-Catenin pathway in breast cancer.
    Li K; Ying M; Feng D; Du J; Chen S; Dan B; Wang C; Wang Y
    Biomed Pharmacother; 2016 Dec; 84():1144-1149. PubMed ID: 27780144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.