These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 31762283)

  • 21. Dynamic Reoxidation/Reduction-Driven Atomic Interdiffusion for Highly Selective CO
    Chang CJ; Lin SC; Chen HC; Wang J; Zheng KJ; Zhu Y; Chen HM
    J Am Chem Soc; 2020 Jul; 142(28):12119-12132. PubMed ID: 32558560
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cu
    Yin Z; Yu C; Zhao Z; Guo X; Shen M; Li N; Muzzio M; Li J; Liu H; Lin H; Yin J; Lu G; Su D; Sun S
    Nano Lett; 2019 Dec; 19(12):8658-8663. PubMed ID: 31682758
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Li Electrochemical Tuning of Metal Oxide for Highly Selective CO
    Jiang K; Wang H; Cai WB; Wang H
    ACS Nano; 2017 Jun; 11(6):6451-6458. PubMed ID: 28558186
    [TBL] [Abstract][Full Text] [Related]  

  • 24.
    Chen R; Zhao J; Li Y; Cui Y; Lu YR; Hung SF; Wang S; Wang W; Huo G; Zhao Y; Liu W; Wang J; Xiao H; Li X; Huang Y; Liu B
    J Am Chem Soc; 2023 Sep; 145(37):20683-20691. PubMed ID: 37683296
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interfaces in Heterogeneous Catalysts: Advancing Mechanistic Understanding through Atomic-Scale Measurements.
    Gao W; Hood ZD; Chi M
    Acc Chem Res; 2017 Apr; 50(4):787-795. PubMed ID: 28207240
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemical and Structural Evolution of AgCu Catalysts in Electrochemical CO
    Chen PC; Chen C; Yang Y; Maulana AL; Jin J; Feijoo J; Yang P
    J Am Chem Soc; 2023 May; 145(18):10116-10125. PubMed ID: 37115017
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Atomic Layer Deposition of ZnO on CuO Enables Selective and Efficient Electroreduction of Carbon Dioxide to Liquid Fuels.
    Ren D; Gao J; Pan L; Wang Z; Luo J; Zakeeruddin SM; Hagfeldt A; Grätzel M
    Angew Chem Int Ed Engl; 2019 Oct; 58(42):15036-15040. PubMed ID: 31433551
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Emergence of Potential-Controlled Cu-Nanocuboids and Graphene-Covered Cu-Nanocuboids under
    Phan TH; Banjac K; Cometto FP; Dattila F; García-Muelas R; Raaijman SJ; Ye C; Koper MTM; López N; Lingenfelder M
    Nano Lett; 2021 Mar; 21(5):2059-2065. PubMed ID: 33617268
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tuning the Selectivity of Liquid Products of CO
    Xu Y; Li C; Xiao Y; Wu C; Li Y; Li Y; Han J; Liu Q; He J
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11567-11574. PubMed ID: 35209715
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quasi-Covalently Coupled Ni-Cu Atomic Pair for Synergistic Electroreduction of CO
    Zhu J; Xiao M; Ren D; Gao R; Liu X; Zhang Z; Luo D; Xing W; Su D; Yu A; Chen Z
    J Am Chem Soc; 2022 Jun; 144(22):9661-9671. PubMed ID: 35622935
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modulating Electronic States of Cu in Metal-Organic Frameworks for Emerging Controllable CH
    Sun M; Cheng J; Anzai A; Kobayashi H; Yamauchi M
    Adv Sci (Weinh); 2024 Jul; ():e2404931. PubMed ID: 38976515
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ALD-Engineered Cu
    Yusufoğlu M; Tafazoli S; Jahangiri H; Yağcı MB; Balkan T; Kaya S
    ACS Appl Mater Interfaces; 2024 Feb; 16(6):7288-7296. PubMed ID: 38316646
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrochemical CO
    Chang Q; Lee JH; Liu Y; Xie Z; Hwang S; Marinkovic NS; Park AA; Kattel S; Chen JG
    JACS Au; 2022 Jan; 2(1):214-222. PubMed ID: 35098238
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selective electrochemical reduction of CO
    Badawy IM; Ismail AM; Khedr GE; Taha MM; Allam NK
    Sci Rep; 2022 Aug; 12(1):13456. PubMed ID: 35931804
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure-activity relationship of Cu-based catalysts for the highly efficient CO
    An R; Chen X; Fang Q; Meng Y; Li X; Cao Y
    Front Chem; 2023; 11():1141453. PubMed ID: 36846850
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Visualizing the gas-sensitive structure of the CuZn surface in methanol synthesis catalysis.
    Jensen S; Mammen MHR; Hedevang M; Li Z; Lammich L; Lauritsen JV
    Nat Commun; 2024 May; 15(1):3865. PubMed ID: 38719827
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced Methanol Synthesis from CO
    Kordus D; Widrinna S; Timoshenko J; Lopez Luna M; Rettenmaier C; Chee SW; Ortega E; Karslioglu O; Kühl S; Roldan Cuenya B
    J Am Chem Soc; 2024 Mar; 146(12):8677-8687. PubMed ID: 38472104
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alloying as a Strategy to Boost the Stability of Copper Nanocatalysts during the Electrochemical CO
    Okatenko V; Loiudice A; Newton MA; Stoian DC; Blokhina A; Chen AN; Rossi K; Buonsanti R
    J Am Chem Soc; 2023 Mar; 145(9):5370-5383. PubMed ID: 36847799
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CO oxidation activity of Pt, Zn and ZnPt nanocatalysts: a comparative study by in situ near-ambient pressure X-ray photoelectron spectroscopy.
    Naitabdi A; Boucly A; Rochet F; Fagiewicz R; Olivieri G; Bournel F; Benbalagh R; Sirotti F; Gallet JJ
    Nanoscale; 2018 Apr; 10(14):6566-6580. PubMed ID: 29577122
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrochemical Reduction of CO
    Qin B; Li Y; Fu H; Wang H; Chen S; Liu Z; Peng F
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20530-20539. PubMed ID: 29847915
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.