BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 31762798)

  • 1. The meaning of "coherent" and its quantification in coherent hemodynamics spectroscopy.
    Sassaroli A; Tgavalekos K; Fantini S
    J Innov Opt Health Sci; 2018 Nov; 11(6):. PubMed ID: 31762798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noninvasive Optical Measurements of Dynamic Cerebral Autoregulation by Inducing Oscillatory Cerebral Hemodynamics.
    Pham T; Fernandez C; Blaney G; Tgavalekos K; Sassaroli A; Cai X; Bibu S; Kornbluth J; Fantini S
    Front Neurol; 2021; 12():745987. PubMed ID: 34867729
    [No Abstract]   [Full Text] [Related]  

  • 3. Wavelet coherence analysis of spontaneous oscillations in cerebral tissue oxyhemoglobin concentrations and arterial blood pressure in elderly subjects.
    Cui R; Zhang M; Li Z; Xin Q; Lu L; Zhou W; Han Q; Gao Y
    Microvasc Res; 2014 May; 93():14-20. PubMed ID: 24594440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wavelet coherence analysis of prefrontal tissue oxyhaemoglobin signals as measured using near-infrared spectroscopy in elderly subjects with cerebral infarction.
    Han Q; Zhang M; Li W; Gao Y; Xin Q; Wang Y; Li Z
    Microvasc Res; 2014 Sep; 95():108-15. PubMed ID: 25117487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear extension of a hemodynamic linear model for coherent hemodynamics spectroscopy.
    Sassaroli A; Kainerstorfer JM; Fantini S
    J Theor Biol; 2016 Jan; 389():132-45. PubMed ID: 26555847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wavelet pressure reactivity index: a validation study.
    Liu X; Czosnyka M; Donnelly J; Cardim D; Cabeleira M; Hutchinson PJ; Hu X; Smielewski P; Brady K
    J Physiol; 2018 Jul; 596(14):2797-2809. PubMed ID: 29665012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Algorithm for Determination of Thresholds of Significant Coherence in Time-Frequency Analysis.
    Blaney G; Sassaroli A; Fantini S
    Biomed Signal Process Control; 2020 Feb; 56():. PubMed ID: 35757281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impaired cerebrovascular reactivity after acute traumatic brain injury can be detected by wavelet phase coherence analysis of the intracranial and arterial blood pressure signals.
    Kvandal P; Sheppard L; Landsverk SA; Stefanovska A; Kirkeboen KA
    J Clin Monit Comput; 2013 Aug; 27(4):375-83. PubMed ID: 23748602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age-related alterations in phase synchronization of oxyhemoglobin concentration changes in prefrontal tissues as measured by near-infrared spectroscopy signals.
    Tan Q; Zhang M; Wang Y; Zhang M; Wang B; Xin Q; Li Z
    Microvasc Res; 2016 Jan; 103():19-25. PubMed ID: 26525098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebral autoregulation in response to posture change in elderly subjects-assessment by wavelet phase coherence analysis of cerebral tissue oxyhemoglobin concentrations and arterial blood pressure signals.
    Gao Y; Zhang M; Han Q; Li W; Xin Q; Wang Y; Li Z
    Behav Brain Res; 2015 Feb; 278():330-6. PubMed ID: 25453742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Race-specific differences in the phase coherence between blood flow and oxygenation: A simultaneous NIRS, white light spectroscopy and LDF study.
    Abdulhameed YA; McClintock PVE; Stefanovska A
    J Biophotonics; 2020 Apr; 13(4):e201960131. PubMed ID: 31944599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring cerebral autoregulation after brain injury: multimodal assessment of cerebral slow-wave oscillations using near-infrared spectroscopy.
    Highton D; Ghosh A; Tachtsidis I; Panovska-Griffiths J; Elwell CE; Smith M
    Anesth Analg; 2015 Jul; 121(1):198-205. PubMed ID: 25993387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase dynamics in cerebral autoregulation.
    Latka M; Turalska M; Glaubic-Latka M; Kolodziej W; Latka D; West BJ
    Am J Physiol Heart Circ Physiol; 2005 Nov; 289(5):H2272-9. PubMed ID: 16024579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wavelet assessment of cerebrospinal compensatory reserve and cerebrovascular reactivity.
    Latka M; Kolodziej W; Turalska M; Latka D; Zub W; West BJ
    Physiol Meas; 2007 May; 28(5):465-79. PubMed ID: 17470981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of poor sleep quality on brain functional connectivity revealed by wavelet-based coherence analysis using NIRS methods in elderly subjects.
    Bu L; Wang D; Huo C; Xu G; Li Z; Li J
    Neurosci Lett; 2018 Mar; 668():108-114. PubMed ID: 29353214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coherent hemodynamics spectroscopy in a single step.
    Kainerstorfer JM; Sassaroli A; Fantini S
    Biomed Opt Express; 2014 Oct; 5(10):3403-16. PubMed ID: 25360359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebral blood flow response to cardiorespiratory oscillations in healthy humans.
    Holme NLA; Zilakos I; Elstad M; Skytioti M
    Auton Neurosci; 2023 Mar; 245():103069. PubMed ID: 36584666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-related changes in spontaneous oscillations assessed by wavelet transform of cerebral oxygenation and arterial blood pressure signals.
    Li Z; Zhang M; Xin Q; Luo S; Cui R; Zhou W; Lu L
    J Cereb Blood Flow Metab; 2013 May; 33(5):692-9. PubMed ID: 23361392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency-resolved analysis of coherent oscillations of local cerebral blood volume, measured with near-infrared spectroscopy, and systemic arterial pressure in healthy human subjects.
    Tgavalekos K; Pham T; Krishnamurthy N; Sassaroli A; Fantini S
    PLoS One; 2019; 14(2):e0211710. PubMed ID: 30753203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wavelet phase synchronization analysis of cerebral blood flow autoregulation.
    Peng T; Rowley AB; Ainslie PN; Poulin MJ; Payne SJ
    IEEE Trans Biomed Eng; 2010 Apr; 57(4):960-8. PubMed ID: 20142164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.