These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 31762842)

  • 1. Catalogue of NIMS fatigue data sheets.
    Furuya Y; Nishikawa H; Hirukawa H; Nagashima N; Takeuchi E
    Sci Technol Adv Mater; 2019; 20(1):1055-1072. PubMed ID: 31762842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Load Controlled Fatigue Behaviour of Microplasma Arc Welded Thin Titanium Grade 5 (6Al-4V) Sheets.
    Szusta J; Tüzün N; Karakaş Ö
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33202932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effect of Weld Reinforcement and Post-Welding Cooling Cycles on Fatigue Strength of Butt-Welded Joints under Cyclic Tensile Loading.
    Araque O; Arzola N; Hernández E
    Materials (Basel); 2018 Apr; 11(4):. PubMed ID: 29649117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructure and Low Cycle Fatigue Properties of AA5083 H111 Friction Stir Welded Joint.
    Torzewski J; Grzelak K; Wachowski M; Kosturek R
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32455812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gigacycle fatigue in high strength steels.
    Furuya Y; Hirukawa H; Takeuchi E
    Sci Technol Adv Mater; 2019; 20(1):643-656. PubMed ID: 31275457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on laser- and plasma-welded titanium.
    Roggensack M; Walter MH; Böning KW
    Dent Mater; 1993 Mar; 9(2):104-7. PubMed ID: 8595837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Welded Pores on Very Long-Life Fatigue Failure of the Electron Beam Welding Joint of TC17 Titanium Alloy.
    Liu F; Zhang H; Liu H; Chen Y; Muhammad Kashif K; Wang Q; Liu Y
    Materials (Basel); 2019 Jun; 12(11):. PubMed ID: 31195649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Microstructures and Fatigue Properties for Dual-Phase Pipeline Steels by Gleeble Simulation of Heat-Affected Zone.
    Zhao Z; Xu P; Cheng H; Miao J; Xiao F
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31226851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Influence of Post-Weld Heat Treatment on the Microstructure and Fatigue Properties of Sc-Modified AA2519 Friction Stir-Welded Joint.
    Kosturek R; Śnieżek L; Wachowski M; Torzewski J
    Materials (Basel); 2019 Feb; 12(4):. PubMed ID: 30781365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement in Fatigue Performance of Aluminium Alloy Welded Joints by Laser Shock Peening in a Dynamic Strain Aging Temperature Regime.
    Su C; Zhou J; Meng X; Huang S
    Materials (Basel); 2016 Sep; 9(10):. PubMed ID: 28773920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatigue Crack Growth Behavior of the MIG Welded Joint of 06Cr19Ni10 Stainless Steel.
    Tang L; Qian C; Ince A; Zheng J; Li H; Han Z
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30072599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Performance of CR180IF and DP600 Laser Welded Steel Sheets under Different Strain Rates.
    Mihaliková M; Zgodavová K; Bober P; Špegárová A
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33810009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatigue life of underwater wet welded low carbon steel SS400.
    Muhayat N; Matien YA; Sukanto H; Saputro YCN; Triyono
    Heliyon; 2020 Feb; 6(2):e03366. PubMed ID: 32072056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extremely-Low-Cycle Fatigue Damage for Beam-to-Column Welded Joints Using Structural Details.
    Huang L; Qu W; Zhao E
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32283852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncertainty Modeling of Fatigue Crack Growth and Probabilistic Life Prediction for Welded Joints of Nuclear Stainless Steel.
    Chang H; Shen M; Yang X; Hou J
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32708921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds.
    Song W; Liu X; Berto F; Razavi SMJ
    Materials (Basel); 2018 Apr; 11(5):. PubMed ID: 29695140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the Fatigue Performance of Friction-Stir Welded Aluminum Alloys.
    Malopheyev S; Vysotskiy I; Zhemchuzhnikova D; Mironov S; Kaibyshev R
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32977697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstructure and Mechanical Properties of Laser-Welded DP Steels Used in the Automotive Industry.
    He H; Forouzan F; Volpp J; Robertson SM; Vuorinen E
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33477790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatigue Property and Small Crack Propagation Mechanism of MIG Welding Joint of 6005A-T6 Aluminum Alloy.
    Peng Z; Yang S; Wang Z; Gao Z
    Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of Dynamic Beam Positioning for Creating Specified Structures and Properties of Welded Joints in Electron-Beam Welding.
    Olshanskaya T; Belenkiy V; Fedoseeva E; Koleva E; Trushnikov D
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32414001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.