BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31763007)

  • 61. A novel and efficient subcritical butane extraction method and UHPLC analysis of oxyprenylated phenylpropanoids from grapefruits peels.
    Genovese S; Epifano F; Preziuso F; Stefanucci A; Scotti L; Bucciarelli T; di Profio P; Canale V; Fiorito S
    J Pharm Biomed Anal; 2020 May; 184():113185. PubMed ID: 32113120
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [Supercritical CO2 extraction and component analysis of Aesculus wilsonii seed oil].
    Chen GY; Shi ZH; Li HC; Ge FH; Zhan HS
    Zhong Yao Cai; 2013 Mar; 36(3):475-8. PubMed ID: 24010333
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Optimization of supercritical carbon dioxide extraction of silkworm pupal oil applying the response surface methodology.
    Wei ZJ; Liao AM; Zhang HX; Liu J; Jiang ST
    Bioresour Technol; 2009 Sep; 100(18):4214-9. PubMed ID: 19414250
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Optimization of Supercritical CO
    Chen X; Li Z; Smith SA; Chen M; Liu H; Zhang J; Tang L; Li J; Liu Q; Wu X
    Front Nutr; 2021; 8():829146. PubMed ID: 35127800
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Simultaneous extraction of oil- and water-soluble phase from sunflower seeds with subcritical water.
    Ravber M; Knez Ž; Škerget M
    Food Chem; 2015 Jan; 166():316-323. PubMed ID: 25053062
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Subcritical Water Extraction of
    Çalhan SD; Meryemoğlu B; Eroğlu P; Saçlı B; Kalderis D
    Molecules; 2023 Mar; 28(5):. PubMed ID: 36903560
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Energy-economy-environment assessments of refrigerants R152a and R134a in a vapor compression refrigeration system using a variable displacement oil-free linear compressor.
    Fang X; Chiong MC; Jiang X; Yu LJ; Chen X; Muhieldeen MW; Al-Talib AAM; Lim WH; Wong KY
    Environ Sci Pollut Res Int; 2023 Sep; 30(45):101223-101233. PubMed ID: 37648923
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Statistically designed optimal process conditions for recuperation of protein from rapeseed meal.
    Nil Das Purkayastha M; Mahanta CL
    J Food Sci Technol; 2015 Jun; 52(6):3203-18. PubMed ID: 26028702
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Extraction of phytosterols and tocopherols from rapeseed oil waste by supercritical CO
    Jafarian Asl P; Niazmand R; Yahyavi F
    Heliyon; 2020 Mar; 6(3):e03592. PubMed ID: 32258458
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Supercritical CO
    Barajas-Álvarez P; Castillo-Herrera GA; Guatemala-Morales GM; Corona-González RI; Arriola-Guevara E; Espinosa-Andrews H
    J Food Sci Technol; 2021 Dec; 58(12):4514-4523. PubMed ID: 34629515
    [TBL] [Abstract][Full Text] [Related]  

  • 71. [High performance liquid chromatographic method for determination of active components in lithospermum oil and its application to process optimization of lithospermum oil prepared by supercritical fluid extraction].
    Shen J; Shen W; Cai X; Wang J; Zheng M
    Se Pu; 2021 Jul; 39(7):708-714. PubMed ID: 34227368
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Supercritical extraction of sunflower oil: A central composite design for extraction variables.
    Rai A; Mohanty B; Bhargava R
    Food Chem; 2016 Feb; 192():647-59. PubMed ID: 26304395
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Emulsifying and Anti-Oxidative Properties of Proteins Extracted from Industrially Cold-Pressed Rapeseed Press-Cake.
    Östbring K; Nilsson K; Ahlström C; Fridolfsson A; Rayner M
    Foods; 2020 May; 9(5):. PubMed ID: 32466177
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Supercritical extraction of volatile and fixed oils from
    Piras A; Porcedda S; Falconieri D; Fais A; Era B; Carta G; Rosa A
    Nat Prod Res; 2022 Apr; 36(7):1883-1888. PubMed ID: 32820642
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Process Optimization for Supercritical Carbon Dioxide Extraction of Origanum vulgare L. Essential Oil Based on the Yield, Carvacrol, and Thymol Contents.
    Lin G; Cheng F; Aimila A; Zhang J; Maiwulanjiang M
    J AOAC Int; 2022 Oct; 105(6):1719-1729. PubMed ID: 35608311
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Supercritical fluid extraction of polybrominated diphenyl ethers (PBDEs) from house dust with supercritical 1,1,1,2-tetrafluoroethane (R134a).
    Calvosa FC; Lagalante AF
    Talanta; 2010 Jan; 80(3):1116-20. PubMed ID: 20006061
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Synthesis of biodiesel from rapeseed oil using supercritical methanol with metal oxide catalysts.
    Yoo SJ; Lee HS; Veriansyah B; Kim J; Kim JD; Lee YW
    Bioresour Technol; 2010 Nov; 101(22):8686-9. PubMed ID: 20620052
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Subcritical n-hexane/isopropanol extraction of lipid from wet microalgal pastes of Scenedesmus obliquus.
    Bian X; Jin W; Gu Q; Zhou X; Xi Y; Tu R; Han SF; Xie GJ; Gao SH; Wang Q
    World J Microbiol Biotechnol; 2018 Feb; 34(3):39. PubMed ID: 29460187
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Exploration for unknown substances in rapeseed oil that shorten survival time of stroke-prone spontaneously hypertensive rats. Effects of super critical gas extraction fractions.
    Ohara N; Naito Y; Nagata T; Tatematsu K; Fuma SY; Tachibana S; Okuyama H
    Food Chem Toxicol; 2006 Jul; 44(7):952-63. PubMed ID: 16364530
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Optimisation for subcritical fluid extraction of 17-methyltestosterone with 1,1,1,2-tetrafluoroethane for HPLC analysis.
    Han Y; Ma Q; Lu J; Xue Y; Xue C
    Food Chem; 2012 Dec; 135(4):2988-93. PubMed ID: 22980901
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.