These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 31763155)

  • 21. Understanding the Chemical Mechanism behind Photoinduced Enhanced Raman Spectroscopy.
    Ye J; Arul R; Nieuwoudt MK; Dong J; Zhang T; Dai L; Greenham NC; Rao A; Hoye RLZ; Gao W; Simpson MC
    J Phys Chem Lett; 2023 May; 14(19):4607-4616. PubMed ID: 37166115
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plasmonic 3D Semiconductor-Metal Nanopore Arrays for Reliable Surface-Enhanced Raman Scattering Detection and In-Site Catalytic Reaction Monitoring.
    Zhang M; Chen T; Liu Y; Zhang J; Sun H; Yang J; Zhu J; Liu J; Wu Y
    ACS Sens; 2018 Nov; 3(11):2446-2454. PubMed ID: 30335972
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrical Tuning of the SERS Enhancement by Precise Defect Density Control.
    Zhou C; Sun L; Zhang F; Gu C; Zeng S; Jiang T; Shen X; Ang DS; Zhou J
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):34091-34099. PubMed ID: 31433618
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism of Surface-Enhanced Raman Scattering Based on 3D Graphene-TiO
    Zheng T; Feng E; Wang Z; Gong X; Tian Y
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):36596-36605. PubMed ID: 28980796
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Noble-Metal-Free Materials for Surface-Enhanced Raman Spectroscopy Detection.
    Tan X; Melkersson J; Wu S; Wang L; Zhang J
    Chemphyschem; 2016 Sep; 17(17):2630-9. PubMed ID: 27191682
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New Mechanism for Long Photo-Induced Enhanced Raman Spectroscopy in Au Nanoparticles Embedded in TiO
    Brognara A; Bricchi BR; William L; Brinza O; Konstantakopoulou M; Bassi AL; Ghidelli M; Lidgi-Guigui N
    Small; 2022 Jun; 18(25):e2201088. PubMed ID: 35616163
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Facile Reduction Method Synthesis of Defective MoO
    Cao Y; Liang P; Dong Q; Wang D; Zhang D; Tang L; Wang L; Jin S; Ni D; Yu Z
    Anal Chem; 2019 Jul; 91(13):8683-8690. PubMed ID: 31149809
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence of oxygen vacancy-mediated ultrahigh SERS sensitivity of Niobium pentoxide nanoparticles through defect engineering: theoretical and experimental studies.
    Ghosal S; Bora A; Giri PK
    Nanoscale; 2023 Dec; 16(1):309-321. PubMed ID: 38059742
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface enhanced Raman spectroscopy on a flat graphene surface.
    Xu W; Ling X; Xiao J; Dresselhaus MS; Kong J; Xu H; Liu Z; Zhang J
    Proc Natl Acad Sci U S A; 2012 Jun; 109(24):9281-6. PubMed ID: 22623525
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metal oxide semiconductor SERS-active substrates by defect engineering.
    Wu H; Wang H; Li G
    Analyst; 2017 Jan; 142(2):326-335. PubMed ID: 27942616
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface-Enhanced Raman Spectroscopy Substrates for Food Safety and Quality Analysis.
    Nilghaz A; Mahdi Mousavi S; Amiri A; Tian J; Cao R; Wang X
    J Agric Food Chem; 2022 May; 70(18):5463-5476. PubMed ID: 35471937
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomimetic Ag/ZnO@PDMS Hybrid Nanorod Array-Mediated Photo-induced Enhanced Raman Spectroscopy Sensor for Quantitative and Visualized Analysis of Microplastics.
    Zhu Z; Han K; Feng Y; Li Z; Zhang A; Wang T; Zhang M; Zhang W
    ACS Appl Mater Interfaces; 2023 Aug; 15(30):36988-36998. PubMed ID: 37466431
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy.
    Tian ZQ; Ren B; Li JF; Yang ZL
    Chem Commun (Camb); 2007 Sep; (34):3514-34. PubMed ID: 18080535
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of oxidation on surface-enhanced Raman scattering activity of silver nanoparticles: a quantitative correlation.
    Han Y; Lupitskyy R; Chou TM; Stafford CM; Du H; Sukhishvili S
    Anal Chem; 2011 Aug; 83(15):5873-80. PubMed ID: 21644591
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plasmonic Pollen Grain Nanostructures: A Three-Dimensional Surface-Enhanced Raman Scattering (SERS)-Active Substrate.
    Hossain MK; Drmosh QA; Mohamedkhair AK
    Chem Asian J; 2021 Jul; 16(13):1807-1819. PubMed ID: 34009749
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure-regulated enhanced Raman scattering on a semiconductor to study temperature-influenced enantioselective identification.
    Xu J; Li J; Liu X; Hu X; Zhou H; Gao Z; Xu J; Song YY
    Chem Sci; 2024 May; 15(19):7308-7315. PubMed ID: 38756792
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mg-Doped ZnO Nanoparticles with Tunable Band Gaps for Surface-Enhanced Raman Scattering (SERS)-Based Sensing.
    Adesoye S; Al Abdullah S; Nowlin K; Dellinger K
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296754
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A versatile biomolecular detection platform based on photo-induced enhanced Raman spectroscopy.
    Man T; Lai W; Xiao M; Wang X; Chandrasekaran AR; Pei H; Li L
    Biosens Bioelectron; 2020 Jan; 147():111742. PubMed ID: 31672389
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Semiconductor-driven "turn-off" surface-enhanced Raman scattering spectroscopy: application in selective determination of chromium(vi) in water.
    Ji W; Wang Y; Tanabe I; Han X; Zhao B; Ozaki Y
    Chem Sci; 2015 Jan; 6(1):342-348. PubMed ID: 28694937
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metal-semiconductor heterostructures for surface-enhanced Raman scattering: synergistic contribution of plasmons and charge transfer.
    Liu Y; Ma H; Han XX; Zhao B
    Mater Horiz; 2021 Feb; 8(2):370-382. PubMed ID: 34821260
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.