These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31763155)

  • 41. Defect engineering in semiconductor-based SERS.
    Song G; Cong S; Zhao Z
    Chem Sci; 2022 Feb; 13(5):1210-1224. PubMed ID: 35222907
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Octahedral silver oxide nanoparticles enabling remarkable SERS activity for detecting circulating tumor cells.
    He M; Lin J; Akakuru OU; Xu X; Li Y; Cao Y; Xu Y; Wu A
    Sci China Life Sci; 2022 Mar; 65(3):561-571. PubMed ID: 34258713
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Surface Enhanced Raman Scattering Revealed by Interfacial Charge-Transfer Transitions.
    Cong S; Liu X; Jiang Y; Zhang W; Zhao Z
    Innovation (Camb); 2020 Nov; 1(3):100051. PubMed ID: 34557716
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An Electrochromic Ag-Decorated WO
    Qu S; Guan J; Cai D; Wang Q; Wang X; Song W; Ji W
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630860
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Irreversible accumulated SERS behavior of the molecule-linked silver and silver-doped titanium dioxide hybrid system.
    Zhou L; Zhou J; Lai W; Yang X; Meng J; Su L; Gu C; Jiang T; Pun EYB; Shao L; Petti L; Sun XW; Jia Z; Li Q; Han J; Mormile P
    Nat Commun; 2020 Apr; 11(1):1785. PubMed ID: 32286258
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantification and coupling of the electromagnetic and chemical contributions in surface-enhanced Raman scattering.
    Su Y; Shi Y; Wang P; Du J; Raschke MB; Pang L
    Beilstein J Nanotechnol; 2019; 10():549-556. PubMed ID: 30873327
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Recent topics on single-molecule fluctuation analysis using blinking in surface-enhanced resonance Raman scattering: clarification by the electromagnetic mechanism.
    Itoh T; Yamamoto YS
    Analyst; 2016 Aug; 141(17):5000-9. PubMed ID: 27241875
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Toward an Atomic-Level Understanding of Ceria-Based Catalysts: When Experiment and Theory Go Hand in Hand.
    Ziemba M; Schilling C; Ganduglia-Pirovano MV; Hess C
    Acc Chem Res; 2021 Jul; 54(13):2884-2893. PubMed ID: 34137246
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Plasmonic Molybdenum Tungsten Oxide Hybrid with Surface-Enhanced Raman Scattering Comparable to that of Noble Metals.
    Li P; Zhu L; Ma C; Zhang L; Guo L; Liu Y; Ma H; Zhao B
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):19153-19160. PubMed ID: 32233413
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Single sea urchin-MoO
    Prabhu B R; Bramhaiah K; Singh KK; John NS
    Nanoscale Adv; 2019 Jun; 1(6):2426-2434. PubMed ID: 36131958
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Raman, UV-Vis Absorption, and Fluorescence Spectroelectrochemistry for Studying the Enhancement of the Raman Scattering Using Nanocrystals Activated by Metal Cations.
    Hernandez S; Perez-Estebanez M; Cheuquepan W; Perales-Rondon JV; Heras A; Colina A
    Anal Chem; 2023 Nov; 95(44):16070-16078. PubMed ID: 37871281
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Constructing the Mo
    Lai K; Yuan K; Ye Q; Chen A; Chen D; Chen D; Gu C
    Biosensors (Basel); 2022 Jan; 12(2):. PubMed ID: 35200312
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review.
    Marica I; Nekvapil F; Ștefan M; Farcău C; Falamaș A
    Beilstein J Nanotechnol; 2022; 13():472-490. PubMed ID: 35673602
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy.
    Wei H; Xu H
    Nanoscale; 2013 Nov; 5(22):10794-805. PubMed ID: 24113688
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A new semiconductor heterojunction SERS substrate for ultra-sensitive detection of antibiotic residues in egg.
    Zhang H; Tang Y; Wang W; Yu D; Yang L; Jiang X; Song W; Zhao B
    Food Chem; 2024 Jan; 431():137163. PubMed ID: 37603998
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Clusters-based silver nanorings: An active substrate for surface-enhanced Raman scattering.
    Hossain MK; Drmosh QA
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Dec; 263():120141. PubMed ID: 34280795
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Surface-Enhanced Raman Scattering on Hierarchical Porous Cuprous Oxide Nanostructures in Nanoshell and Thin-Film Geometries.
    Qiu C; Zhang L; Wang H; Jiang C
    J Phys Chem Lett; 2012 Mar; 3(5):651-7. PubMed ID: 26286162
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nanoscale Synergetic Effects on Ag-TiO
    Shondo J; Veziroglu S; Tjardts T; Sarwar TB; Mishra YK; Faupel F; Aktas OC
    Small; 2022 Dec; 18(50):e2203861. PubMed ID: 36135727
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Recent Development of SERS Technology: Semiconductor-Based Study.
    Yang B; Jin S; Guo S; Park Y; Chen L; Zhao B; Jung YM
    ACS Omega; 2019 Dec; 4(23):20101-20108. PubMed ID: 31815210
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Surface Enhanced Raman Spectroscopy of Organic Molecules on Magnetite (Fe3O4) Nanoparticles.
    Lee N; Schuck PJ; Nico PS; Gilbert B
    J Phys Chem Lett; 2015 Mar; 6(6):970-4. PubMed ID: 26262854
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.