BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31763271)

  • 1. The Reliability of Polyvinylidene Fluoride Sensor for Intra- and Intersession Measurements.
    Manjunatha RG; Prakash S; Rajanna K
    Indian J Otolaryngol Head Neck Surg; 2019 Nov; 71(Suppl 3):1935-1939. PubMed ID: 31763271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Piezoelectric sensing: Evaluation for clinical investigation of deviated nasal septum.
    Manjunatha RG; Rajanna K; Mahapatra RD; Dorasala S
    Allergy Rhinol (Providence); 2013; 4(3):e140-50. PubMed ID: 24498519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of polyvinylidene fluoride nasal sensor to assess nasal obstruction in comparison with subjective technique.
    Roopa Manjunatha G; Mahapatra DR; Prakash S; Rajanna K
    Am J Otolaryngol; 2015; 36(2):122-9. PubMed ID: 25447932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of polyvinylidene fluoride nasal sensor to assess deviated nasal septum in comparision with peak nasal inspiratory flow measurements.
    Manjunatha RG; Rajanna K; Mahapatra DR; Prakash S
    Am J Rhinol Allergy; 2014; 28(1):e62-7. PubMed ID: 24717887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intersession repeatability of acoustic rhinometry measurements in healthy volunteers.
    Al Ahmari MD; Wedzicha JA; Hurst JR
    Clin Exp Otorhinolaryngol; 2012 Sep; 5(3):156-60. PubMed ID: 22977713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyvinylidene fluoride film based nasal sensor to monitor human respiration pattern: an initial clinical study.
    Roopa Manjunatha G; Rajanna K; Mahapatra DR; Nayak MM; Krishnaswamy UM; Srinivasa R
    J Clin Monit Comput; 2013 Dec; 27(6):647-57. PubMed ID: 23771706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intra- and intersession reliability of acoustic rhinometry in measuring nasal cross-sectional area.
    Ognibene NE; Merrick MA; Ingersoll CD
    Ear Nose Throat J; 2001 Aug; 80(8):536, 539-40. PubMed ID: 11523471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of respiratory event detection by a polyvinylidene fluoride film airflow sensor and a pneumotachograph in sleep apnea patients.
    Berry RB; Koch GL; Trautz S; Wagner MH
    Chest; 2005 Sep; 128(3):1331-8. PubMed ID: 16162726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Flow Velocity Measurement Method Based on a PVDF Piezoelectric Sensor.
    Li Q; Xing J; Shang D; Wang Y
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30959943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a PVDF Sensor Array for Measurement of the Dynamic Pressure Field of the Blade Tip in an Axial Flow Compressor.
    Cong J; Jing J; Chen C
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30901968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Porosity on Piezoelectric Characteristics of Polyvinylidene Fluoride Films for Biomedical Applications.
    Kloster JT; Danley MJ; Lai VK; Zhao P
    BME Front; 2023; 4():0009. PubMed ID: 37849669
    [No Abstract]   [Full Text] [Related]  

  • 12. Test-retest reliability and minimal detectable change of the SmartWheel clinical protocol.
    Lui J; MacGillivray MK; Sawatzky BJ
    Arch Phys Med Rehabil; 2012 Dec; 93(12):2367-72. PubMed ID: 22842483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyvinylidene fluoride film sensors in collocated feedback structural control: application for suppressing impact-induced disturbances.
    Ma CC; Chuang KC; Pan SY
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Dec; 58(12):2539-54. PubMed ID: 23443690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dependence of the impact response of polyvinylidene fluoride sensors on their supporting materials' elasticity.
    Jia Y; Chen X; Ni Q; Li L; Ju C
    Sensors (Basel); 2013 Jul; 13(7):8669-78. PubMed ID: 23881132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A PVDF-Based Sensor for Internal Stress Monitoring of a Concrete-Filled Steel Tubular (CFST) Column Subject to Impact Loads.
    Du G; Li Z; Song G
    Sensors (Basel); 2018 May; 18(6):. PubMed ID: 29882909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact resistance test system for the helmet based on a polyvinylidene fluoride piezoelectric sensor array.
    Li Q; Liao X; Huang X; Wei X; Zhang X
    Int J Occup Saf Ergon; 2023 Mar; 29(1):199-206. PubMed ID: 35023446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intra and intersession repeatability and reliability of the S-Plate® pressure platform.
    Izquierdo-Renau M; Pérez-Soriano P; Ribas-García V; Queralt A
    Gait Posture; 2017 Feb; 52():224-226. PubMed ID: 27936441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porosity Modulated High-Performance Piezoelectric Nanogenerator Based on Organic/Inorganic Nanomaterials for Self-Powered Structural Health Monitoring.
    Rana MM; Khan AA; Huang G; Mei N; Saritas R; Wen B; Zhang S; Voss P; Abdel-Rahman E; Leonenko Z; Islam S; Ban D
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47503-47512. PubMed ID: 32969216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intra and intersession repeatability and reliability of dynamic parameters in pressure platform assessments on subjects with simulated leg length discrepancy. A cross-sectional research.
    Pereiro-Buceta H; Calvo-Lobo C; Becerro-de-Bengoa-Vallejo R; Losa-Iglesias ME; Romero-Morales C; López-López D; Martínez-Jiménez EM
    Sao Paulo Med J; 2021; 139(5):424-434. PubMed ID: 34190874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Polarization of PVDF Film Triggered by Hydrophilic Treatment for Pyroelectric Sensor with Ultra-Low Piezoelectric Noise.
    Wu Y; Du X; Gao R; Li J; Li W; Yu H; Jiang Z; Wang Z; Tai H
    Nanoscale Res Lett; 2019 Feb; 14(1):72. PubMed ID: 30820843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.