These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 31763385)

  • 1. Dataset showing thermal conductivity of South-Eastern Nigerian kaolinite clay admixtures with sawdust and iron filings for fired-bricks production.
    Mgbemene CA; Akinlabi ET; Ikumapayi OM
    Data Brief; 2019 Dec; 27():104708. PubMed ID: 31763385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of olive mill waste addition on the properties of porous fired clay bricks using Taguchi method.
    Sutcu M; Ozturk S; Yalamac E; Gencel O
    J Environ Manage; 2016 Oct; 181():185-192. PubMed ID: 27343435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reuse of walnut shell waste in the development of fired ceramic bricks.
    Barnabas AA; Balogun OA; Akinwande AA; Ogbodo JF; Ademati AO; Dongo EI; Romanovski V
    Environ Sci Pollut Res Int; 2023 Jan; 30(5):11823-11837. PubMed ID: 36098915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sustainable Use of Marble Waste in Industrial Production of Fired Clay Bricks and Its Employment for Treatment of Flue Gases.
    Ahmad S; Hassan Shah MU; Ullah A; Shah SN; Rehan MS; Khan IA; Ahmad MI
    ACS Omega; 2021 Sep; 6(35):22559-22569. PubMed ID: 34514228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Firing Temperature on the Physical, Thermal and Microstructural Properties of Kankara Kaolin Clay: A Preliminary Investigation.
    Abubakar M; Muthuraja A; Rajak DK; Ahmad N; Pruncu CI; Lamberti L; Kumar A
    Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32316254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Volcanic Tuff as Secondary Raw Material in the Production of Clay Bricks.
    Cobîrzan N; Thalmaier G; Balog AA; Constantinescu H; Ceclan A; Nasui M
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of bottom ash from olive pomace combustion in the production of eco-friendly fired clay bricks.
    Eliche-Quesada D; Leite-Costa J
    Waste Manag; 2016 Feb; 48():323-333. PubMed ID: 26653359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recycling of marble cutting waste additives in fired clay brick structure: a statistical approach to process parameters.
    Erdogmus E; Yaras A; Sutcu M; Gencel O
    Environ Sci Pollut Res Int; 2022 Oct; 29(47):71936-71947. PubMed ID: 35608771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of organic residues addition on the technological properties of clay bricks.
    Demir I
    Waste Manag; 2008; 28(3):622-7. PubMed ID: 17512183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluoride-immobilized co-processing and resource utilization of aluminum-electrolyzed spent cathode carbon in brick-fired kiln.
    Sang Y; Liu C; Yuan H; Chi Z; Ji L; Cao R; Gu Q
    Environ Sci Pollut Res Int; 2022 Dec; 29(58):87527-87533. PubMed ID: 35809169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geotechnical evaluation of clayey materials for quality burnt bricks.
    Akintola GO; Amponsah-Dacosta F; Mhlongo SE
    Heliyon; 2020 Dec; 6(12):e05626. PubMed ID: 33313432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating Radiation Shielding of Fired Clay Bricks Using ANN and GEP Approaches.
    Amin MN; Ahmad I; Abbas A; Khan K; Qadir MG; Iqbal M; Abu-Arab AM; Alabdullah AA
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manufacture of Sustainable Clay Bricks Using Waste from Secondary Aluminum Recycling as Raw Material.
    Bonet-Martínez E; Pérez-Villarejo L; Eliche-Quesada D; Castro E
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30513855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the firing behaviour of an illite-kaolinite clay mineral and its potential use as membrane support.
    Elgamouz A; Tijani N; Shehadi I; Hasan K; Al-Farooq Kawam M
    Heliyon; 2019 Aug; 5(8):e02281. PubMed ID: 31508517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilization potential of silica fume in fired clay bricks.
    Baspinar MS; Demir I; Orhan M
    Waste Manag Res; 2010 Feb; 28(2):149-57. PubMed ID: 19748959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recycling of Cigarette Butts in Fired Clay Bricks: A New Laboratory Investigation.
    Kurmus H; Mohajerani A
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32050481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of using arsenic-iron sludge wastes in brick making.
    Hassan KM; Fukushi K; Turikuzzaman K; Moniruzzaman SM
    Waste Manag; 2014 Jun; 34(6):1072-8. PubMed ID: 24129213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A practical proposal for solving the world's cigarette butt problem: Recycling in fired clay bricks.
    Mohajerani A; Kadir AA; Larobina L
    Waste Manag; 2016 Jun; 52():228-44. PubMed ID: 26975623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alkali Activation of Waste Clay Bricks: Influence of The Silica Modulus, SiO
    Gado RA; Hebda M; Łach M; Mikuła J
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31947637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of eco-friendly porous fired clay bricks using pore-forming agents: a review.
    Bories C; Borredon ME; Vedrenne E; Vilarem G
    J Environ Manage; 2014 Oct; 143():186-96. PubMed ID: 24908498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.