BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 31763517)

  • 21. Highly luminescent InP/GaP/ZnS QDs emitting in the entire color range via a heating up process.
    Park JP; Lee JJ; Kim SW
    Sci Rep; 2016 Jul; 6():30094. PubMed ID: 27435428
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of blue emitting InP/ZnS quantum dots through control of competition between etching and growth.
    Lim K; Jang HS; Woo K
    Nanotechnology; 2012 Dec; 23(48):485609. PubMed ID: 23138715
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Highly efficient green InP-based quantum dot light-emitting diodes regulated by inner alloyed shell component.
    Yu P; Cao S; Shan Y; Bi Y; Hu Y; Zeng R; Zou B; Wang Y; Zhao J
    Light Sci Appl; 2022 May; 11(1):162. PubMed ID: 35637219
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flexible Memristive Devices Based on InP/ZnSe/ZnS Core-Multishell Quantum Dot Nanocomposites.
    Kim DH; Wu C; Park DH; Kim WK; Seo HW; Kim SW; Kim TW
    ACS Appl Mater Interfaces; 2018 May; 10(17):14843-14849. PubMed ID: 29631394
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A seed-mediated and double shell strategy to realize large-size ZnSe/ZnS/ZnS quantum dots for high color purity blue light-emitting diodes.
    Yang Z; Wu Q; Zhou X; Cao F; Yang X; Zhang J; Li W
    Nanoscale; 2021 Feb; 13(8):4562-4568. PubMed ID: 33599633
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-Brightness Blue InP Quantum Dot-Based Electroluminescent Devices: The Role of Shell Thickness.
    Zhang H; Ma X; Lin Q; Zeng Z; Wang H; Li LS; Shen H; Jia Y; Du Z
    J Phys Chem Lett; 2020 Feb; 11(3):960-967. PubMed ID: 31957438
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solvothermal synthesis of InP quantum dots and their enhanced luminescent efficiency by post-synthetic treatments.
    Byun HJ; Lee JC; Yang H
    J Colloid Interface Sci; 2011 Mar; 355(1):35-41. PubMed ID: 21194707
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Blue-emitting InP quantum dots participate in an efficient resonance energy transfer process in water.
    Roy P; Virmani M; Pillai PP
    Chem Sci; 2023 May; 14(19):5167-5176. PubMed ID: 37206393
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simple Synthesis of CuInS
    Li H; Jiang X; Wang A; Chu X; Du Z
    Front Chem; 2020; 8():669. PubMed ID: 33195004
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Facile consecutive solvothermal growth of highly fluorescent InP/ZnS core/shell quantum dots using a safer phosphorus source.
    Byun HJ; Song WS; Yang H
    Nanotechnology; 2011 Jun; 22(23):235605. PubMed ID: 21483087
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Full-Spectrum InP-Based Quantum Dots with Near-Unity Photoluminescence Quantum Efficiency.
    Van Avermaet H; Schiettecatte P; Hinz S; Giordano L; Ferrari F; Nayral C; Delpech F; Maultzsch J; Lange H; Hens Z
    ACS Nano; 2022 Jun; 16(6):9701-9712. PubMed ID: 35709384
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Increasing the Energy Gap between Band-Edge and Trap States Slows Down Picosecond Carrier Trapping in Highly Luminescent InP/ZnSe/ZnS Quantum Dots.
    Sung YM; Kim TG; Yun DJ; Lim M; Ko DS; Jung C; Won N; Park S; Jeon WS; Lee HS; Kim JH; Jun S; Sul S; Hwang S
    Small; 2021 Dec; 17(52):e2102792. PubMed ID: 34636144
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ZnSe:Te/ZnSeS/ZnS nanocrystals: an access to cadmium-free pure-blue quantum-dot light-emitting diodes.
    Bao Z; Jiang ZF; Su Q; Chiu HD; Yang H; Chen S; Chung RJ; Liu RS
    Nanoscale; 2020 Jun; 12(21):11556-11561. PubMed ID: 32432271
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Composition-dependent trap distributions in CdSe and InP quantum dots probed using photoluminescence blinking dynamics.
    Chung H; Cho KS; Koh WK; Kim D; Kim J
    Nanoscale; 2016 Jul; 8(29):14109-16. PubMed ID: 27272126
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly Bright Silica-Coated InP/ZnS Quantum Dot-Embedded Silica Nanoparticles as Biocompatible Nanoprobes.
    Ham KM; Kim M; Bock S; Kim J; Kim W; Jung HS; An J; Song H; Kim JW; Kim HM; Rho WY; Lee SH; Park SM; Kim DE; Jun BH
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142888
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Emission-tunable CuInS2/ZnS quantum dots: structure, optical properties, and application in white light-emitting diodes with high color rendering index.
    Chuang PH; Lin CC; Liu RS
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15379-87. PubMed ID: 25111960
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Narrow Intrinsic Line Widths and Electron-Phonon Coupling of InP Colloidal Quantum Dots.
    Berkinsky DB; Proppe AH; Utzat H; Krajewska CJ; Sun W; Šverko T; Yoo JJ; Chung H; Won YH; Kim T; Jang E; Bawendi MG
    ACS Nano; 2023 Feb; 17(4):3598-3609. PubMed ID: 36758155
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bright alloy type-II quantum dots and their application to light-emitting diodes.
    Jin X; Li H; Huang S; Gu X; Shen H; Li D; Zhang X; Zhang Q; Li F; Li Q
    J Colloid Interface Sci; 2018 Jan; 510():376-383. PubMed ID: 28963940
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly Efficient Deep Blue Cd-Free Quantum Dot Light-Emitting Diodes by a p-Type Doped Emissive Layer.
    Cho H; Park S; Shin H; Kim M; Jang H; Park J; Yang JH; Han CW; Baek JH; Jung YS; Jeon DY
    Small; 2020 Oct; 16(40):e2002109. PubMed ID: 32930494
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and Electroluminescence.
    Li Y; Hou X; Dai X; Yao Z; Lv L; Jin Y; Peng X
    J Am Chem Soc; 2019 Apr; 141(16):6448-6452. PubMed ID: 30964282
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.