These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31763528)

  • 21. Influences of the Reaction Temperature and Catalysts on the Pyrolysis Product Distribution of Lignocellulosic Biomass (Aspen Wood and Rice Husk).
    Sun T; Chen Z; Wang R; Yang Y; Zhang L; Li Y; Liu P; Lei T
    Polymers (Basel); 2023 Jul; 15(14):. PubMed ID: 37514493
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermogravimetric and calorimetric characteristics during co-pyrolysis of municipal solid waste components.
    Ansah E; Wang L; Shahbazi A
    Waste Manag; 2016 Oct; 56():196-206. PubMed ID: 27324928
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recycling slaughterhouse waste into fertilizer: how do pyrolysis temperature and biomass additions affect phosphorus availability and chemistry?
    Zwetsloot MJ; Lehmann J; Solomon D
    J Sci Food Agric; 2015 Jan; 95(2):281-8. PubMed ID: 24789609
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of heating rates on the products of high-temperature pyrolysis of waste wood pellets and biomass model compounds.
    Efika CE; Onwudili JA; Williams PT
    Waste Manag; 2018 Jun; 76():497-506. PubMed ID: 29559298
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of hydrothermal treatment on the pyrolysis behavior of Chinese fan palm.
    Yao Z; Ma X
    Bioresour Technol; 2018 Jan; 247():504-512. PubMed ID: 28972903
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of monomeric phenols by thermochemical conversion of biomass: a review.
    Amen-Chen C; Pakdel H; Roy C
    Bioresour Technol; 2001 Sep; 79(3):277-99. PubMed ID: 11499582
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Propagation Methods Decide Root Architecture of Chinese Fir: Evidence from Tissue Culturing, Rooted Cutting and Seed Germination.
    Li L; Deng X; Zhang T; Tian Y; Ma X; Wu P
    Plants (Basel); 2022 Sep; 11(19):. PubMed ID: 36235338
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Production of a bio-magnetic adsorbent via co-pyrolysis of pine wood waste and red mud.
    Kang K; Loebsack G; Sarchami T; Klinghoffer NB; Papari S; Yeung KK; Berruti F
    Waste Manag; 2022 Jul; 149():124-133. PubMed ID: 35728476
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Value added liquid products from waste biomass pyrolysis using pretreatments.
    Das O; Sarmah AK
    Sci Total Environ; 2015 Dec; 538():145-51. PubMed ID: 26298257
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel insights into the enrichment of phenols from walnut shell pyrolysis loop: Torrefaction coupled fractional condensation.
    Zhu X; Luo Z; Zhu X
    Waste Manag; 2021 Jul; 131():462-470. PubMed ID: 34271394
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strategic hazard mitigation of waste furniture boards via pyrolysis: Pyrolysis behavior, mechanisms, and value-added products.
    Foong SY; Liew RK; Lee CL; Tan WP; Peng W; Sonne C; Tsang YF; Lam SS
    J Hazard Mater; 2022 Jan; 421():126774. PubMed ID: 34364214
    [TBL] [Abstract][Full Text] [Related]  

  • 32. White rot fungal impact on the evolution of simple phenols during decay of silver fir wood by UHPLC-HQOMS.
    Di Lella S; La Porta N; Tognetti R; Lombardi F; Nardin T; Larcher R
    Phytochem Anal; 2022 Mar; 33(2):170-183. PubMed ID: 34322910
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of products obtained from pyrolysis and steam gasification of wood waste, RDF, and RPF.
    Hwang IH; Kobayashi J; Kawamoto K
    Waste Manag; 2014 Feb; 34(2):402-10. PubMed ID: 24246576
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potential of stepwise pyrolysis for on-site treatment of agro-residues and enrichment of value-added chemicals.
    Bhatnagar A; Tolvanen H; Konttinen J
    Waste Manag; 2020 Dec; 118():667-676. PubMed ID: 33011544
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative study on pyrolysis of lignocellulosic and algal biomass using pyrolysis-gas chromatography/mass spectrometry.
    Li K; Zhang L; Zhu L; Zhu X
    Bioresour Technol; 2017 Jun; 234():48-52. PubMed ID: 28315604
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure and pyrolysis characteristics of lignin derived from wood powder hydrolysis residues.
    Zhang B; Yin X; Wu C; Qiu Z; Wang C; Huang Y; Ma L; Wu S
    Appl Biochem Biotechnol; 2012 Sep; 168(1):37-46. PubMed ID: 21603951
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Magnetic biochar production alters the molecular characteristics and biological response of pyrolysis volatile-derived water-soluble organic matter.
    Shang H; Wang Q; Ok YS; Zhang S; Zhu X
    Sci Total Environ; 2021 Jul; 778():146142. PubMed ID: 33714822
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Slow pyrolysis of prot, alkali and dealkaline lignins for production of chemicals.
    Biswas B; Singh R; Kumar J; Khan AA; Krishna BB; Bhaskar T
    Bioresour Technol; 2016 Aug; 213():319-326. PubMed ID: 26873286
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemical Composition, Antioxidant, and Antibacterial Activity of Wood Vinegar from Litchi chinensis.
    Yang JF; Yang CH; Liang MT; Gao ZJ; Wu YW; Chuang LY
    Molecules; 2016 Aug; 21(9):. PubMed ID: 27589711
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evolved gas analysis and slow pyrolysis mechanism of bamboo by thermogravimetric analysis, Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry.
    Wu X; Ba Y; Wang X; Niu M; Fang K
    Bioresour Technol; 2018 Oct; 266():407-412. PubMed ID: 29982064
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.