BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 31763828)

  • 41. Transformation of iodide and formation of iodinated by-products in heat activated persulfate oxidation process.
    Wang L; Kong D; Ji Y; Lu J; Yin X; Zhou Q
    Chemosphere; 2017 Aug; 181():400-408. PubMed ID: 28458215
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The oxidation of phenol by ferrate(VI) and ferrate(V). A pulse radiolysis and stopped-flow study.
    Rush JD; Cyr JE; Zhao Z; Bielski BH
    Free Radic Res; 1995 Apr; 22(4):349-60. PubMed ID: 7633565
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The fate and transformation of iodine species in UV irradiation and UV-based advanced oxidation processes.
    Ye T; Zhang TY; Tian FX; Xu B
    Water Res; 2021 Nov; 206():117755. PubMed ID: 34695669
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Coagulation of Iodide-Containing Resorcinol Solution or Natural Waters with Ferric Chloride Can Produce Iodinated Coagulation Byproducts.
    Ding S; Deng Y; Li H; Fang C; Gao N; Chu W
    Environ Sci Technol; 2019 Nov; 53(21):12407-12415. PubMed ID: 31553594
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Investigation of disinfection byproducts formation in ferrate(VI) pre-oxidation of NOM and its model compounds followed by chlorination.
    Gan W; Sharma VK; Zhang X; Yang L; Yang X
    J Hazard Mater; 2015 Jul; 292():197-204. PubMed ID: 25814185
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Oxidation of propyl paraben by ferrate(VI): Kinetics, products, and toxicity assessment.
    An J; Xia C; He J; Feng H
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018 Aug; 53(10):873-882. PubMed ID: 29672207
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ferrates: greener oxidants with multimodal action in water treatment technologies.
    Sharma VK; Zboril R; Varma RS
    Acc Chem Res; 2015 Feb; 48(2):182-91. PubMed ID: 25668700
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhanced ferrate(VI) oxidation of organic pollutants through direct electron transfer.
    Wang Y; Xiao Z; Liu Y; Tian W; Huang Z; Zhao X; Wang L; Wang S; Ma J
    Water Res; 2023 Oct; 244():120506. PubMed ID: 37651863
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transformation of Iodide by Carbon Nanotube Activated Peroxydisulfate and Formation of Iodoorganic Compounds in the Presence of Natural Organic Matter.
    Guan C; Jiang J; Luo C; Pang S; Jiang C; Ma J; Jin Y; Li J
    Environ Sci Technol; 2017 Jan; 51(1):479-487. PubMed ID: 27982571
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanism for the oxidation of phenol by sulfatoferrate(VI): Comparison with various oxidants.
    Peings V; Frayret J; Pigot T
    J Environ Manage; 2015 Jul; 157():287-96. PubMed ID: 25917560
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mitigation and degradation of natural organic matters (NOMs) during ferrate(VI) application for drinking water treatment.
    Song Y; Deng Y; Jung C
    Chemosphere; 2016 Mar; 146():145-53. PubMed ID: 26714297
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ferrate self-decomposition in water is also a self-activation process: Role of Fe(V) species and enhancement with Fe(III) in methyl phenyl sulfoxide oxidation by excess ferrate.
    Huang ZS; Wang L; Liu YL; Zhang HY; Zhao XN; Bai Y; Ma J
    Water Res; 2021 Jun; 197():117094. PubMed ID: 33836297
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Impact of Phosphate on Ferrate Oxidation of Organic Compounds: An Underestimated Oxidant.
    Huang ZS; Wang L; Liu YL; Jiang J; Xue M; Xu CB; Zhen YF; Wang YC; Ma J
    Environ Sci Technol; 2018 Dec; 52(23):13897-13907. PubMed ID: 30379540
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reinvestigation of the oxidation of organic contaminants by Fe(VI): Kinetics and effects of water matrix constituents.
    Wang S; Deng Y; Shao B; Zhu J; Guan X
    J Hazard Mater; 2022 May; 430():128421. PubMed ID: 35152109
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Insights into mechanisms of UV/ferrate oxidation for degradation of phenolic pollutants: Role of superoxide radicals.
    Wu S; Liu H; Lin Y; Yang C; Lou W; Sun J; Du C; Zhang D; Nie L; Yin K; Zhong Y
    Chemosphere; 2020 Apr; 244():125490. PubMed ID: 31812060
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Addressing harmful algal blooms (HABs) impacts with ferrate(VI): Simultaneous removal of algal cells and toxins for drinking water treatment.
    Deng Y; Wu M; Zhang H; Zheng L; Acosta Y; Hsu TD
    Chemosphere; 2017 Nov; 186():757-761. PubMed ID: 28822256
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanisms of oxidation of organosulfur compounds by ferrate(VI).
    Sharma VK; Luther GW; Millero FJ
    Chemosphere; 2011 Feb; 82(8):1083-9. PubMed ID: 21215423
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Degradation of tetrabromobisphenol A by ferrate(VI) oxidation: Performance, inorganic and organic products, pathway and toxicity control.
    Han Q; Dong W; Wang H; Liu T; Tian Y; Song X
    Chemosphere; 2018 May; 198():92-102. PubMed ID: 29421765
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reaction kinetics and oxidation product formation in the degradation of acetaminophen by ferrate (VI).
    Wang H; Liu Y; Jiang JQ
    Chemosphere; 2016 Jul; 155():583-590. PubMed ID: 27155474
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Degradation of organic pollutants by ferrate/biochar: Enhanced formation of strong intermediate oxidative iron species.
    Tian SQ; Wang L; Liu YL; Ma J
    Water Res; 2020 Sep; 183():116054. PubMed ID: 32668351
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.