These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 31763828)

  • 81. Improvement of Fe(VI) oxidation by NaClO on degrading phenolic substances and reducing DBPs formation potential.
    He H; Wang L; Liu Y; Qiu W; Liu Z; Ma J
    Sci Total Environ; 2023 Mar; 864():161080. PubMed ID: 36574852
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Activation of ferrate by carbon nanotube for enhanced degradation of bromophenols: Kinetics, products, and involvement of Fe(V)/Fe(IV).
    Sun S; Jiang J; Qiu L; Pang S; Li J; Liu C; Wang L; Xue M; Ma J
    Water Res; 2019 Jun; 156():1-8. PubMed ID: 30897545
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Oxidation of benzophenone-3 during water treatment with ferrate(VI).
    Yang B; Ying GG
    Water Res; 2013 May; 47(7):2458-66. PubMed ID: 23481287
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Enhanced removal of phenolic compounds by ferrate(VI): Unveiling the Bi(III)-Bi(V) valence cycle with in situ formed bismuth hydroxide as catalyst.
    Li X; Liu M; Wu N; Sharma VK; Qu R
    Water Res; 2024 Jan; 248():120827. PubMed ID: 37956606
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Characterization of unknown iodinated disinfection byproducts during chlorination/chloramination using ultrahigh resolution mass spectrometry.
    Wang X; Wang J; Zhang Y; Shi Q; Zhang H; Zhang Y; Yang M
    Sci Total Environ; 2016 Jun; 554-555():83-8. PubMed ID: 26950622
    [TBL] [Abstract][Full Text] [Related]  

  • 86. A simple treatment method for phenylarsenic compounds: Oxidation by ferrate (VI) and simultaneous removal of the arsenate released with in situ formed Fe(III) oxide-hydroxide.
    Xie X; Cheng H
    Environ Int; 2019 Jun; 127():730-741. PubMed ID: 31003056
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Oxidation of ciprofloxacin and enrofloxacin by ferrate(VI): Products identification, and toxicity evaluation.
    Yang B; Kookana RS; Williams M; Ying GG; Du J; Doan H; Kumar A
    J Hazard Mater; 2016 Dec; 320():296-303. PubMed ID: 27565854
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Removal of iodide from water by chlorination and subsequent adsorption on powdered activated carbon.
    Ikari M; Matsui Y; Suzuki Y; Matsushita T; Shirasaki N
    Water Res; 2015 Jan; 68():227-37. PubMed ID: 25462731
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Oxidation of X-ray compound ditrizoic acid by ferrate(VI).
    Anquandah G; Ray MB; Ray AK; Al-Abduly AJ; Sharma VK
    Environ Technol; 2011; 32(3-4):261-7. PubMed ID: 21780694
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Rapid Selective Circumneutral Degradation of Phenolic Pollutants Using Peroxymonosulfate-Iodide Metal-Free Oxidation: Role of Iodine Atoms.
    Feng Y; Lee PH; Wu D; Shih K
    Environ Sci Technol; 2017 Feb; 51(4):2312-2320. PubMed ID: 28128552
    [TBL] [Abstract][Full Text] [Related]  

  • 91. The influence of pH on the degradation of phenol and chlorophenols by potassium ferrate.
    Graham N; Jiang CC; Li XZ; Jiang JQ; Ma J
    Chemosphere; 2004 Sep; 56(10):949-56. PubMed ID: 15268961
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Role of Ferrate(IV) and Ferrate(V) in Activating Ferrate(VI) by Calcium Sulfite for Enhanced Oxidation of Organic Contaminants.
    Shao B; Dong H; Sun B; Guan X
    Environ Sci Technol; 2019 Jan; 53(2):894-902. PubMed ID: 30570262
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Oxidation of trimethoprim by ferrate(VI): kinetics, products, and antibacterial activity.
    Anquandah GA; Sharma VK; Knight DA; Batchu SR; Gardinali PR
    Environ Sci Technol; 2011 Dec; 45(24):10575-81. PubMed ID: 22032699
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Transformation of iodide by Fe(II) activated peroxydisulfate.
    Dong Z; Jiang C; Yang J; Zhang X; Dai W; Cai P
    J Hazard Mater; 2019 Jul; 373():519-526. PubMed ID: 30951996
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Determination of iodide, iodate and organo-iodine in waters with a new total organic iodine measurement approach.
    Gong T; Zhang X
    Water Res; 2013 Nov; 47(17):6660-9. PubMed ID: 24075720
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Kinetics and mechanism of diclofenac removal using ferrate(VI): roles of Fe
    Zhao J; Wang Q; Fu Y; Peng B; Zhou G
    Environ Sci Pollut Res Int; 2018 Aug; 25(23):22998-23008. PubMed ID: 29858998
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Removal of toxic metals using ferrate(VI): a review.
    Dong S; Mu Y; Sun X
    Water Sci Technol; 2019 Oct; 80(7):1213-1225. PubMed ID: 31850873
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Oxidation of octylphenol by ferrate(VI).
    Anquandah GA; Sharma VK
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Jan; 44(1):62-6. PubMed ID: 19085596
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Ferrate(VI): green chemistry oxidant for degradation of cationic surfactant.
    Eng YY; Sharma VK; Ray AK
    Chemosphere; 2006 Jun; 63(10):1785-90. PubMed ID: 16303166
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Degradation of chloramphenicol by potassium ferrate (VI) oxidation: kinetics and products.
    Zhou JH; Chen KB; Hong QK; Zeng FC; Wang HY
    Environ Sci Pollut Res Int; 2017 Apr; 24(11):10166-10171. PubMed ID: 28258432
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.