These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 31763845)

  • 21. Progress in understanding wetting transitions on rough surfaces.
    Bormashenko E
    Adv Colloid Interface Sci; 2015 Aug; 222():92-103. PubMed ID: 24594103
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analytical modeling and thermodynamic analysis of robust superhydrophobic surfaces with inverse-trapezoidal microstructures.
    Im M; Im H; Lee JH; Yoon JB; Choi YK
    Langmuir; 2010 Nov; 26(22):17389-97. PubMed ID: 20879754
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pressure induced transition between superhydrophobic states: configuration diagrams and effect of surface feature size.
    Liu B; Lange FF
    J Colloid Interface Sci; 2006 Jun; 298(2):899-909. PubMed ID: 16480735
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Geometric and chemical nonuniformity may induce the stability of more than one wetting state in the same hydrophobic surface.
    Lazzari D; Brito C
    Phys Rev E; 2019 Mar; 99(3-1):032801. PubMed ID: 30999416
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling the Effects of Nanopatterned Surfaces on Wetting States of Droplets.
    Xiao K; Zhao Y; Ouyang G; Li X
    Nanoscale Res Lett; 2017 Dec; 12(1):309. PubMed ID: 28449550
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Water droplet motion control on superhydrophobic surfaces: exploiting the Wenzel-to-Cassie transition.
    Liu G; Fu L; Rode AV; Craig VS
    Langmuir; 2011 Mar; 27(6):2595-600. PubMed ID: 21322574
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetics of droplet wetting mode transitions on grooved surfaces: forward flux sampling.
    Shahraz A; Borhan A; Fichthorn KA
    Langmuir; 2014 Dec; 30(51):15442-50. PubMed ID: 25470510
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rationalization of the behavior of solid-liquid surface free energy of water in Cassie and Wenzel wetting states on rugged solid surfaces at the nanometer scale.
    Leroy F; Müller-Plathe F
    Langmuir; 2011 Jan; 27(2):637-45. PubMed ID: 21142209
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of multiscale roughness in the Lotus effect: is it essential for super-hydrophobicity?
    Bittoun E; Marmur A
    Langmuir; 2012 Oct; 28(39):13933-42. PubMed ID: 22946829
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stability of Cassie-Baxter wetting states on microstructured surfaces.
    Guo HY; Li B; Feng XQ
    Phys Rev E; 2016 Oct; 94(4-1):042801. PubMed ID: 27841635
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Explaining Evaporation-Triggered Wetting Transition Using Local Force Balance Model and Contact Line-Fraction.
    Annavarapu RK; Kim S; Wang M; Hart AJ; Sojoudi H
    Sci Rep; 2019 Jan; 9(1):405. PubMed ID: 30674992
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Revisiting the Critical Condition for the Cassie-Wenzel Transition on Micropillar-Structured Surfaces.
    Fang W; Guo HY; Li B; Li Q; Feng XQ
    Langmuir; 2018 Apr; 34(13):3838-3844. PubMed ID: 29513543
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of geometrical characteristics of surface roughness on droplet wetting.
    Sheng YJ; Jiang S; Tsao HK
    J Chem Phys; 2007 Dec; 127(23):234704. PubMed ID: 18154406
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces.
    Zheng QS; Yu Y; Zhao ZH
    Langmuir; 2005 Dec; 21(26):12207-12. PubMed ID: 16342993
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intermediate wetting state at nano/microstructured surfaces.
    Nagayama G; Zhang D
    Soft Matter; 2020 Apr; 16(14):3514-3521. PubMed ID: 32215385
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Objective quantification of surface roughness parameters affecting superhydrophobicity.
    Cho Y; Park CH
    RSC Adv; 2020 Aug; 10(52):31251-31260. PubMed ID: 35520686
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spontaneous transition of a water droplet from the Wenzel state to the Cassie state: a molecular dynamics simulation study.
    Wang J; Chen S; Chen D
    Phys Chem Chem Phys; 2015 Nov; 17(45):30533-9. PubMed ID: 26524012
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic wetting and spreading and the role of topography.
    McHale G; Newton MI; Shirtcliffe NJ
    J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of geometric patterns of microstructured superhydrophobic surfaces on water-harvesting performance via dewing.
    Seo D; Lee C; Nam Y
    Langmuir; 2014 Dec; 30(51):15468-76. PubMed ID: 25466626
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Patterned nonadhesive surfaces: superhydrophobicity and wetting regime transitions.
    Nosonovsky M; Bhushan B
    Langmuir; 2008 Feb; 24(4):1525-33. PubMed ID: 18072794
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.