BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 31763918)

  • 1. Lateral Subunit Coupling Determines Intermediate Filament Mechanics.
    Lorenz C; Forsting J; Schepers AV; Kraxner J; Bauch S; Witt H; Klumpp S; Köster S
    Phys Rev Lett; 2019 Nov; 123(18):188102. PubMed ID: 31763918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of early assembly intermediates of recombinant human keratins.
    Herrmann H; Wedig T; Porter RM; Lane EB; Aebi U
    J Struct Biol; 2002; 137(1-2):82-96. PubMed ID: 12064936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vimentin Intermediate Filaments Undergo Irreversible Conformational Changes during Cyclic Loading.
    Forsting J; Kraxner J; Witt H; Janshoff A; Köster S
    Nano Lett; 2019 Oct; 19(10):7349-7356. PubMed ID: 31498648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiscale mechanics and temporal evolution of vimentin intermediate filament networks.
    Schepers AV; Lorenz C; Nietmann P; Janshoff A; Klumpp S; Köster S
    Proc Natl Acad Sci U S A; 2021 Jul; 118(27):. PubMed ID: 34187892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning intermediate filament mechanics by variation of pH and ion charges.
    Schepers AV; Lorenz C; Köster S
    Nanoscale; 2020 Jul; 12(28):15236-15245. PubMed ID: 32642745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical structure controls nanomechanical properties of vimentin intermediate filaments.
    Qin Z; Kreplak L; Buehler MJ
    PLoS One; 2009 Oct; 4(10):e7294. PubMed ID: 19806221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the mechanical properties of single vimentin intermediate filaments by atomic force microscopy.
    Guzmán C; Jeney S; Kreplak L; Kasas S; Kulik AJ; Aebi U; Forró L
    J Mol Biol; 2006 Jul; 360(3):623-30. PubMed ID: 16765985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The unique biomechanics of intermediate filaments - From single filaments to cells and tissues.
    Rölleke U; Kumari P; Meyer R; Köster S
    Curr Opin Cell Biol; 2023 Dec; 85():102263. PubMed ID: 37871499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Keratin filament mechanics and energy dissipation are determined by metal-like plasticity.
    Lorenz C; Forsting J; Style RW; Klumpp S; Köster S
    Matter; 2023 Jun; 6(6):2019-2033. PubMed ID: 37332398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epidermal alpha-keratin is neutral-buffer-soluble and forms intermediate filaments under physiological conditions in vitro.
    Skerrow D; Skerrow CJ; Hunter I
    Biochim Biophys Acta; 1987 Sep; 915(1):125-31. PubMed ID: 2441752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural analysis of vimentin and keratin intermediate filaments by cryo-electron tomography.
    Norlén L; Masich S; Goldie KN; Hoenger A
    Exp Cell Res; 2007 Jun; 313(10):2217-27. PubMed ID: 17499715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-translational modifications soften vimentin intermediate filaments.
    Kraxner J; Lorenz C; Menzel J; Parfentev I; Silbern I; Denz M; Urlaub H; Schwappach B; Köster S
    Nanoscale; 2021 Jan; 13(1):380-387. PubMed ID: 33351020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of phosphorylation in keratin and vimentin filament integrity in cultured thyroid epithelial cells.
    Deery WJ
    Cell Motil Cytoskeleton; 1993; 26(4):325-39. PubMed ID: 7507800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The nanomechanical properties of rat fibroblasts are modulated by interfering with the vimentin intermediate filament system.
    Plodinec M; Loparic M; Suetterlin R; Herrmann H; Aebi U; Schoenenberger CA
    J Struct Biol; 2011 Jun; 174(3):476-84. PubMed ID: 21426942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversity of intermediate filament structure. Evidence that the alignment of coiled-coil molecules in vimentin is different from that in keratin intermediate filaments.
    Steinert PM; Marekov LN; Parry DA
    J Biol Chem; 1993 Nov; 268(33):24916-25. PubMed ID: 7693709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Keratins determine network stress responsiveness in reconstituted actin-keratin filament systems.
    Elbalasy I; Mollenkopf P; Tutmarc C; Herrmann H; Schnauß J
    Soft Matter; 2021 Apr; 17(14):3954-3962. PubMed ID: 33724291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanics of Single Vimentin Intermediate Filaments Under Load.
    Schepers AV; Kraxner J; Lorenz C; Köster S
    Methods Mol Biol; 2022; 2478():677-700. PubMed ID: 36063338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the flexibility of intermediate filaments by atomic force microscopy.
    Mücke N; Kreplak L; Kirmse R; Wedig T; Herrmann H; Aebi U; Langowski J
    J Mol Biol; 2004 Jan; 335(5):1241-50. PubMed ID: 14729340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vimentin filaments follow the preexisting cytokeratin network during epithelial-mesenchymal transition of cultured neonatal rat hepatocytes.
    Pagan R; Martín I; Alonso A; Llobera M; Vilaró S
    Exp Cell Res; 1996 Feb; 222(2):333-44. PubMed ID: 8598222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of distinct early assembly units of different intermediate filament proteins.
    Herrmann H; Häner M; Brettel M; Ku NO; Aebi U
    J Mol Biol; 1999 Mar; 286(5):1403-20. PubMed ID: 10064706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.