BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 31764460)

  • 1. Free-living Evaluation of Laboratory-based Activity Classifiers in Preschoolers.
    Ahmadi MN; Brookes D; Chowdhury A; Pavey T; Trost SG
    Med Sci Sports Exerc; 2020 May; 52(5):1227-1234. PubMed ID: 31764460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensor-enabled Activity Class Recognition in Preschoolers: Hip versus Wrist Data.
    Trost SG; Cliff DP; Ahmadi MN; Tuc NV; Hagenbuchner M
    Med Sci Sports Exerc; 2018 Mar; 50(3):634-641. PubMed ID: 29059107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hip and Wrist Accelerometer Algorithms for Free-Living Behavior Classification.
    Ellis K; Kerr J; Godbole S; Staudenmayer J; Lanckriet G
    Med Sci Sports Exerc; 2016 May; 48(5):933-40. PubMed ID: 26673126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Device-based measurement of physical activity in pre-schoolers: Comparison of machine learning and cut point methods.
    Ahmadi MN; Trost SG
    PLoS One; 2022; 17(4):e0266970. PubMed ID: 35417492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of cut-points for determining activity intensity from a wrist-worn ActiGraph accelerometer in free-living adults.
    Montoye AHK; Clevenger KA; Pfeiffer KA; Nelson MB; Bock JM; Imboden MT; Kaminsky LA
    J Sports Sci; 2020 Nov; 38(22):2569-2578. PubMed ID: 32677510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of Activity Classification Algorithms in Free-Living Older Adults.
    Sasaki JE; Hickey AM; Staudenmayer JW; John D; Kent JA; Freedson PS
    Med Sci Sports Exerc; 2016 May; 48(5):941-50. PubMed ID: 26673129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning algorithms for activity recognition in ambulant children and adolescents with cerebral palsy.
    Ahmadi M; O'Neil M; Fragala-Pinkham M; Lennon N; Trost S
    J Neuroeng Rehabil; 2018 Nov; 15(1):105. PubMed ID: 30442154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hip and Wrist-Worn Accelerometer Data Analysis for Toddler Activities.
    Kwon S; Zavos P; Nickele K; Sugianto A; Albert MV
    Int J Environ Res Public Health; 2019 Jul; 16(14):. PubMed ID: 31330889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Field evaluation of a random forest activity classifier for wrist-worn accelerometer data.
    Pavey TG; Gilson ND; Gomersall SR; Clark B; Trost SG
    J Sci Med Sport; 2017 Jan; 20(1):75-80. PubMed ID: 27372275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating Sedentary Time from a Hip- and Wrist-Worn Accelerometer.
    Marcotte RT; Petrucci GJ; Cox MF; Freedson PS; Staudenmayer JW; Sirard JR
    Med Sci Sports Exerc; 2020 Jan; 52(1):225-232. PubMed ID: 31343523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine Learning Models for Classifying Physical Activity in Free-Living Preschool Children.
    Ahmadi MN; Pavey TG; Trost SG
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32764316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of activity type in preschool children using machine learning techniques.
    Hagenbuchner M; Cliff DP; Trost SG; Van Tuc N; Peoples GE
    J Sci Med Sport; 2015 Jul; 18(4):426-31. PubMed ID: 25088983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Dual-Accelerometer System for Detecting Human Movement in a Free-living Environment.
    Narayanan A; Stewart T; Mackay L
    Med Sci Sports Exerc; 2020 Jan; 52(1):252-258. PubMed ID: 31361712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-validation and out-of-sample testing of physical activity intensity predictions with a wrist-worn accelerometer.
    Montoye AHK; Westgate BS; Fonley MR; Pfeiffer KA
    J Appl Physiol (1985); 2018 May; 124(5):1284-1293. PubMed ID: 29369742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classifiers for Accelerometer-Measured Behaviors in Older Women.
    Rosenberg D; Godbole S; Ellis K; Di C; Lacroix A; Natarajan L; Kerr J
    Med Sci Sports Exerc; 2017 Mar; 49(3):610-616. PubMed ID: 28222058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating Physical Activity and Sedentary Behavior in a Free-Living Context: A Pragmatic Comparison of Consumer-Based Activity Trackers and ActiGraph Accelerometry.
    Gomersall SR; Ng N; Burton NW; Pavey TG; Gilson ND; Brown WJ
    J Med Internet Res; 2016 Sep; 18(9):e239. PubMed ID: 27604226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine Learning to Quantify Physical Activity in Children with Cerebral Palsy: Comparison of Group, Group-Personalized, and Fully-Personalized Activity Classification Models.
    Ahmadi MN; O'Neil ME; Baque E; Boyd RN; Trost SG
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of raw acceleration cut-points for wrist and hip accelerometers to assess sedentary behaviour and physical activity in 5-7-year-old children.
    Crotti M; Foweather L; Rudd JR; Hurter L; Schwarz S; Boddy LM
    J Sports Sci; 2020 May; 38(9):1036-1045. PubMed ID: 32228156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of raw acceleration sedentary thresholds in children and adults.
    Hildebrand M; Hansen BH; van Hees VT; Ekelund U
    Scand J Med Sci Sports; 2017 Dec; 27(12):1814-1823. PubMed ID: 27878845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Objective Assessment of Physical Activity: Classifiers for Public Health.
    Kerr J; Patterson RE; Ellis K; Godbole S; Johnson E; Lanckriet G; Staudenmayer J
    Med Sci Sports Exerc; 2016 May; 48(5):951-7. PubMed ID: 27089222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.